Aspects of parton energy loss in cold QCD media

François Arleo

LAPTH, Annecy

Assemblée plénière GDR nucléon

CEA Saclay – 25-26 November 2010
Outline

- **Motivations**
 - why energy loss
 - why cold nuclear matter
- **Energy loss in various observables**
 - Drell-Yan production in p A collisions
 - hadron production in semi-inclusive DIS
- **Recent developments**
 - revisiting scaling properties of energy loss

References

Energy loss and gluon radiation

Multiple soft collisions of the hard parton

- Gluon radiation $dI/d\omega$ proportional to the medium density

\[\text{[Baier, Dokshitzer, Mueller, Peigné, Schiff 1996, 1997]} \]
\[\text{[Gyulassy, Wang 1994; Gyulassy, Léai, Vitev 2000]} \]
\[\text{[Zakharov 1996 1997 1998 ; Wiedemann 2000 2001]} \]

- Energy loss huge in quark-gluon plasma

How to probe this mechanism?
Jet quenching

A clear experimental observable

Quenching of jets in heavy ion collisions

[Bjorken 1982; Gyulassy & Wang 1992]
Jet quenching

What about energy loss in ***cold nuclear matter***?
Energy loss in cold vs. hot matter

Transport coefficient

Typical energy loss is proportional to the transport coefficient \hat{q} which characterizes the scattering property of the medium [BDMPS 97]

$$\hat{q} = \frac{\mu^2}{\lambda}$$

- μ: typical momentum transfer in single rescattering (of the order of the Debye mass $m_D \sim gT$)
- λ: radiated gluon mean free path
Energy loss in cold vs. hot matter

Transport coefficient

Typical energy loss is proportional to the transport coefficient \hat{q} which characterizes the scattering property of the medium \[\text{[BDMPS 97]} \]

Energy loss in cold/hot nuclear matter (medium length L)

\[-\Delta E = \frac{\alpha_s C_R}{4} \hat{q} L^2 \]

Relationship between energy loss and momentum broadening

\[-\frac{dE}{dz} = \frac{\alpha_s N_c}{4} \langle p_{\perp}^2 \rangle \]

- independent of \hat{q}
- independent of the nature of the parton
Perturbative estimates

Cold matter

\[
\hat{q} = \frac{4\pi^2 \alpha_s N_c}{N_c^2 - 1} \rho xG(x, Q^2) \simeq 0.02 \text{ GeV}^2/\text{fm}
\]

\[-dE/dz \simeq 0.1 \text{ GeV/fm} \left(\frac{L}{5 \text{ fm}} \right)\]

Hot matter (e.g. \(T = 250 \text{ MeV} \))

\[\mu \sim 500 \text{ MeV}, \ \lambda \sim 0.5 \text{ fm} \Rightarrow \hat{q} \simeq 0.5 \text{ GeV}^2/\text{fm}\]

Parton energy loss much larger in hot matter than in cold matter
Extracting energy loss from data

Ideal process: Drell-Yan production in p A collisions

\[q^p \bar{q}^A \rightarrow \gamma^* \rightarrow \ell^+\ell^- \]

- Multiple scattering of the incoming quark in large nuclei
- No energy loss in the final state
- Very precise measurements by E866/Nusea over a wide range in \(x_F \)
Extracting energy loss from data

\[\sigma(pA \rightarrow \mu^+ \mu^- X) \propto A^\alpha \]

\(\alpha \lesssim 1 \): slight suppression at large \(x_F \)

Is the suppression coming from energy loss?
Longstanding debate on the origin of the nuclear dependence of E866/NuSea p A data

- First attributed as coming from nuclear PDF effects \cite{Vasiliev:1999in}

 - small energy loss: upper limit $-dE/dz < 0.5 \text{ GeV/fm}$
Energy loss and DY data

Longstanding debate on the origin of the nuclear dependence of E866/NuSea p A data

- First attributed as coming from **nuclear PDF effects** [Vasiliev et al. 1999]
 - small energy loss: upper limit $-dE/dz < 0.5$ GeV/fm

Issue

Conclusions were based on the use of EKS98 nPDF set which already included E772 data (i.e. same kinematic conditions as E866/NuSea)

- Agreement between E866/NuSea and EKS98 somewhat inconclusive
- No room left for energy loss processes
Longstanding debate on the origin of the nuclear dependence of E866/NuSea p A data

- First attributed as coming from nuclear PDF effects [Vasiliev et al. 1999]
- Later accounted for by significant energy loss effects [Johnson et al. 2001]

\[-\frac{dE}{dz} = 2.7 \pm 0.4 \pm 0.5 \text{ GeV/fm}\]

- E722 and E866/NuSea binned in DY mass
- small shadowing computed within a dipole model
Longstanding debate on the origin of the nuclear dependence of E866/NuSea p A data

- First attributed as coming from nuclear PDF effects \[\text{Vasiliev et al. 1999} \]
- Later accounted for by significant energy loss effects \[\text{Johnson et al. 2001} \]

\[
\frac{dE}{dz} = 2.7 \pm 0.4 \pm 0.5 \text{ GeV/fm}
\]

E722 and E866/NuSea binned in DY mass

Small shadowing computed within a dipole model

Francois Arleo (LAPTH) Parton energy loss in cold QCD media Assemblée GDR nucléon 8 / 21
Longstanding debate on the origin of the nuclear dependence of E866/NuSea p A data

- First attributed as coming from nuclear PDF effects [Vasiliev et al. 1999]
- Later accounted for by significant energy loss effects [Johnson et al. 2001]

\[-\frac{dE}{dz} = 2.7 \pm 0.4 \pm 0.5 \text{ GeV/fm}\]

...disfavoured by older DY measurements [FA 2002]

- DY data in π A collisions at SPS
DY data analysis

Ingredients of the model

- Computation of DY production in QCD at leading order
- Shift of the momentum fraction x_1 carried by the quark in the projectile proton to account for energy loss processes
- Nuclear shadowing (using EKS98) turned on or off
- Amount of energy loss fitted to E866 (FNAL) and NA3 (SPS) data

\[
\frac{d\sigma(hA)}{dx_1} = \frac{8\pi\alpha^2}{9x_1s} \sum_q e_q^2 \int \frac{dM}{M} \int d\epsilon \mathcal{P}(\epsilon)
\[
\left[Zf_q^h(x_1 + \Delta x_1) f_q^{p/A}(x_2) + (A - Z) f_q^h(x_1 + \Delta x_1) f_{\bar{q}}^{n/A}(x_2) \right.
\]
\[
\left. + Zf_{\bar{q}}^h(x_1 + \Delta x_1) f_q^{p/A}(x_2) + (A - Z) f_{\bar{q}}^h(x_1 + \Delta x_1) f_{\bar{q}}^{n/A}(x_2) \right]
\]

with $\mathcal{P}(\epsilon)$: probability distribution in the energy loss [Baier et al. 2001]
Probability distribution

Poisson approximation

\[P(\epsilon) \propto \sum_{n=0}^{\infty} \frac{1}{n!} \left[\prod_{i=1}^{n} \int d\omega_i \frac{dl(\omega_i)}{d\omega} \right] \delta \left(\epsilon - \sum_{i=1}^{n} \omega_i \right) \]

- Uniquely related to the medium-induced gluon spectrum \(dl/d\omega \) characterized by the transport coefficient \(\hat{q} \)

![Graph showing the probability distribution function \(P(\epsilon) \) with different values of \(E/\omega_c \).]
Main results

DY in p A collisions at FNAL ($\sqrt{s} \simeq 40$ GeV)

- Amount of quark energy loss crucially depends on the poorly known sea-quark shadowing at small x_2
- No reliable extraction of quark energy loss due to nPDF uncertainties
Many global fit analyses (EKS, EPS, HKM, HKN, nDS) and models

Huge uncertainties at small x and low scales

see talk by T. Stavreva
Main results

DY in p A collisions at FNAL ($\sqrt{s} \approx 40$ GeV)

- Amount of quark energy loss crucially depends on the poorly known sea-quark shadowing at small x_2
- No reliable extraction of quark energy loss due to nPDF uncertainties

DY in π A collisions at SPS ($\sqrt{s} \approx 20$ GeV)

- Larger error bars, but . . .
- nPDF effects small and well constrained
 - $x_2 = \mathcal{O}(10^{-1})$ between shadowing and EMC region
 - Valence quark (pion beam) constrained in e A DIS
Energy loss and NA3 data

- Large energy loss disfavoured
- Effects stronger at large x_1 due to phase-space restriction for medium-induced gluon radiation

$$
\epsilon < (1 - x_1) E_{\text{beam}}
$$
Results

NA3 fit gives

\[-\frac{dE}{dz} = 0.20 \pm 0.15 \text{ GeV/fm}\]

Result independent on the assumption regarding nPDF effects (unlike p A collisions at higher energy)
Energy loss and NA3 data

Results

- NA3 fit gives
 \[\frac{-dE}{dz} = 0.20 \pm 0.15 \text{ GeV/fm} \]

- Result *independent* on the assumption regarding nPDF effects (unlike p A collisions at higher energy)

Remarks

- Smaller error bars would help tremendously!
- Exciting data to come at FNAL at lower beam energy (E906)
- Complementary results at J-PARC
 - P-04: High mass di-muon measurements in p A collisions
Results

- NA3 fit gives

\[-\frac{dE}{dz} = 0.20 \pm 0.15 \text{ GeV/fm}\]

- Result independent on the assumption regarding nPDF effects (unlike p A collisions at higher energy)

What about energy loss in hadron production?
Energy loss in hadron production

Simplest model for medium-modified “fragmentation functions”

- Fragmentation variable \(z \) rescaled to a larger value
 \[
 z^* = \frac{E_h}{k_\perp - \epsilon} = \frac{z}{1 - \epsilon/k_\perp}
 \]

- Parton energy shifted from \(k_\perp \) to \(k_\perp - \epsilon \) with probability \(\mathcal{P}(\epsilon, k_\perp) \)

\[
z D_h^{k_{med}}(z, Q^2) = \int_0^{(1-z)k_\perp} d\epsilon \mathcal{P}(\epsilon, k_\perp) z^* D_h^k(z^*, Q^2)
\]

[Wang, Huang, Sarcevic 96]
Energy loss in hadron production

Simplest model for medium-modified “fragmentation functions”

- Fragmentation variable z rescaled to a larger value

 \[z^* = \frac{E_h}{k_{\perp} - \epsilon} = \frac{z}{1 - \epsilon/k_{\perp}} \]

- Parton energy shifted from k_{\perp} to $k_{\perp} - \epsilon$ with probability $P(\epsilon, k_{\perp})$

 \[zD_k^{med}(z, Q^2) = \int_0^{(1-z)k_{\perp}} d\epsilon \ P(\epsilon, k_{\perp}) \ z^* D_k^h(z^*, Q^2) \]

- Hadronization takes places on times scales \gg medium length
- Explicit dependence on the parton energy
- No Q^2-dependence

[Wang, Huang, Sarcevic 96]
Energy loss in semi-inclusive DIS on nuclei

Example

Semi-inclusive hadron production in DIS on nuclei: \(eA \rightarrow hX \)

\[
R^h_{eA} = \frac{1}{N_{eA}} \frac{dN^h_{eA}(z, \nu)}{d\nu \, dz} \left/ \frac{1}{N_{eD}} \frac{dN^h_{eD}(z, \nu)}{d\nu \, dz} \right.
\]

Francois Arleo (LAPTH)

Parton energy loss in cold QCD media

Assemblée GDR nucléon
Phenomenological consequences

What trends to be expected from the model?

For simplicity let us assume that $D^h(z) \sim (1 - z)^{\eta^h}$ at large z

$$R^h_{eA}(z, \nu) \simeq \frac{D^h_{\text{med}}(z)}{D^h_{u}(z)} \simeq 1 + \frac{1}{D^h_{u}(z)} \frac{\partial D^h_{u}}{\partial z} \frac{z \epsilon}{\nu} \approx 1 - \eta^h_u \times \frac{z \epsilon}{\nu(1 - z)}$$
Phenomenological consequences

What trends to be expected from the model?

For simplicity let us assume that $D^h(z) \sim (1 - z)^{\eta^h_i}$ at large z

$$R^h_{eA}(z, \nu) \simeq \frac{D^h_{u}^{med}(z)}{D^h_{u}(z)} \simeq 1 + \frac{1}{D^h_{u}(z)} \frac{\partial D^h_{u}}{\partial z} \frac{z \epsilon}{\nu} \approx 1 - \eta^h_u \times \frac{z \epsilon}{\nu(1 - z)}$$

- $R^h_{eA} \ll 1$
 - at small parton energy
 - at large z due to phase space shrinkage
- Suppression sensitive to the (log) slope of fragmentation function η^h_i
 - stronger suppression for gluon induced processes, on top of the C_A/C_F factor in the energy loss
 - stronger suppression for baryons than for mesons (!)
Comparison to HERMES data

\[R_h(\nu) \]

\[R_h(\nu) \]

\(\nu \) and \(z \) dependence well reproduced

\(\eta_u^{K^-} > \eta_u^{K^+} \) leads to a stronger \(K^- \) suppression as seen in HERMES

[FA 2003, HERMES Airapetian et al. 2003]
Comparison to HERMES data

Caveat: nuclear absorption

Inelastic interaction of the produced hadron might play a role too

\[\text{Kopeliovich et al. 1996, Accardi, Muccifora, Pirner 2003, Falter et al. 2004} \]

- Somewhat depends on hadronization time scales
- (Pre) hadronic cross sections with nuclear matter poorly constrained

Recent effort to disentangle energy loss and nuclear absorption

\[\text{Accardi 2006-2008} \]
New results

Recent measurements on $\langle k_\perp \rangle$ broadening of produced hadrons in e A semi-inclusive DIS (CLAS, HERMES)

[in Accardi et al. 2009]
Transverse momentum broadening

New results

Recent measurements on $\langle k_\perp \rangle$ broadening of produced hadrons in eA semi-inclusive DIS (CLAS, HERMES)

![Graph showing recent measurements on $\langle k_\perp \rangle$ broadening of produced hadrons in eA semi-inclusive DIS (CLAS, HERMES).](image)

[van Haarlem, Jgoun, Di Nezza 2007]
New results

Recent measurements on $\langle k_\perp \rangle$ broadening of produced hadrons in e A semi-inclusive DIS (CLAS, HERMES)

![Graph showing Δp_t^2 vs. ν (GeV) for different elements: Ne, Kr, Xe, with data points for π^+, π^-, K^+ from HERMES preliminary results.]

- Might be sensitive to the details of hadronization dynamics

 - [van Haarlem, Jgoun, Di Nezza 2007]
 - [Accardi 2008, Domdey, Kopeliovich, Pirner 2008]
Nuclear dependence of J/ψ production

J/ψ production in p A collisions

- Precise measurements
 - E866/NuSea at FNAL ($\sqrt{s} = 40$ GeV)
 - PHENIX at RHIC ($\sqrt{s} = 200$ GeV)
Nuclear dependence of J/ψ production

- Significant J/ψ suppression observed
- Much larger than in the DY channel

[E866/NuSea 1999]
Nuclear dependence of J/ψ production

Some explanations

- **Nuclear absorption**
 - could explain mid-rapidity J/ψ and ψ' suppression
 - requires unrealistically large cross sections to explain large x_F data

- **Nuclear PDF effects (or saturation)**
 - disfavoured by lack of x_2 scaling

- **Intrinsic charm**
 - J/ψ production from $|uudc\bar{c}\rangle$ soft scattering on nuclei
 - requires high charm content disfavoured by F_2^c data

- **Parton energy loss**
 - successful explanation assuming $-\Delta E \propto E$

[Brodsky Hoyer 1989]

[Gavin, Milana 1992]
Energy loss phenomenology

Gavin-Milana model

- \langle \epsilon \rangle \propto E_i \rightarrow \Delta x_1 \propto x_1 : x_1 \text{ scaling of } J/\psi \text{ suppression}
- Should also affect Drell-Yan nuclear dependence
- Energy loss processes also in the final state

[Gavin Milana 92]
Energy loss phenomenology

Gavin-Milana model

- $\langle \epsilon \rangle \propto E_i \rightarrow \Delta x_1 \propto x_1$ scaling of J/ψ suppression
- Should also affect Drell-Yan nuclear dependence
- Energy loss processes also in the final state

Brodsky-Hoyer bound on energy loss

Assumption: Induced gluon radiation needs to resolve the medium

$$t_f \sim \frac{\omega}{k^2_\perp} \lesssim L \quad \omega \lesssim k^2_\perp L \sim q L^2$$

- Bound independent of the parton energy
- Energy loss cannot be arbitrarily large in a finite medium

Apparently rules out energy loss models as a possible explanation
Revisiting energy loss

(i) For a parton produced in the medium, radiation of gluons with large formation times cancels out in the induced gluon spectrum

\[
\frac{dI}{d\omega}\Bigg|_{\text{ind}} = \frac{dI}{d\omega}\Bigg|_{pA} - \frac{dI}{d\omega}\Bigg|_{pp}
\]

leading to Brodsky-Hoyer bound for DIS, DY, large-\(p_\perp\) jets...

(ii) For a color charge produced nearly collinearly to an initial state parton, interference terms dominate the induced spectrum

- induced radiation dominated by large formation times: no bound!
- energy loss proportional to the parton energy \(\Delta E \sim \alpha_s \langle \Delta q_\perp \rangle M E\)

Qualitative consequences

- Might explain \(J/\psi\) suppression at large \(x_F\) due to the propagation of the color octet \(c\bar{c}\) state in the nucleus
- Should also affect open charm production, not DY nor DIS on nuclei
Summary

- **Parton energy loss**
 - powerful tool to investigate scattering properties of QCD media

- **Energy loss in nuclear matter**
 - DY production as a sensitive probe of quark energy loss
 - current situation needs to be clarified with precise data at lower beam energy (e.g. E906 at FNAL and P-04 at J-PARC)
 - wealth of data in SIDIS consistent with DY and small energy loss

- **New considerations**
 - needs to consider in some cases the associated radiation to a hard process in vacuum/medium instead of “parton energy loss”
 - might qualitatively explain the nuclear dependence of J/ψ (and open charm) production in p A collisions