

LSST : camera calibration and photo-z study

Adeline choyer

LPSC Grenoble, France

June, 24 2014

Contents

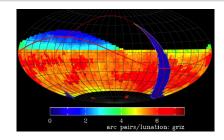
- The Large Synoptic Survey Telescope
 - LSST project
 - LSST camera
- 2 Camera Calibration Optical Bench
 - CCOB specification
 - The test bench at LPSC
 - Beam stability as a function of temperature
- Photometric redshift reconstruction with LSST
 - LSST science goal
 - Method for photo-z reconstruction
 - Impact of filters spatial variations
- 4 Conclusion and perspectives

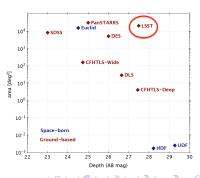
LSST project

• Site : Cerro Pachón, Chili.

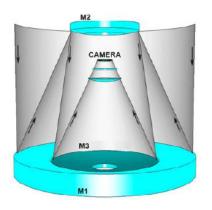
• First light : 2020.

• Wide

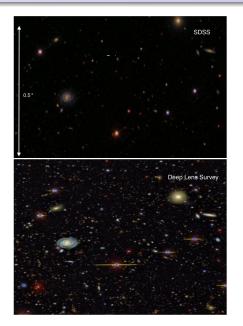

- large apperture : 9.6 deg² (~50 full moon)
- visible sky : $20\ 000\ deg^2$

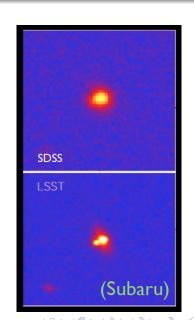

Fast

- rapidly scan the sky: 15 s pose + 2s read + 15 s pose + new pointing as reading
- Revisit after 30-60 min;
- Complete scan every 4 night.


Deep

- Observe billions of galaxies
- $m_r = 27.7 (10 \text{ years})$ $m_x = -2.5 log(F_x)$ $\Delta m = 3 \Leftrightarrow F/16$

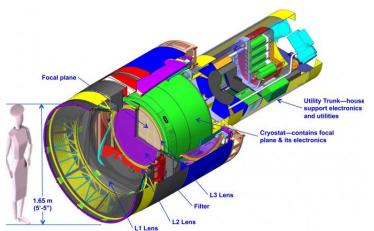



Optics

- Three mirror design (Paul-Baker system)
- \bullet primary mirror : 8.4m
- ⇒ large field of view with excellent image quality
 - quality is only limited by atmospheric seeing.

Image quality

Camera


• 3 lenses + 6 filter (ugrizy)

• Mass 3000 kg,

• diameter : 1.65 m

 \bullet length: 3.73 m

• incident angle : 14.2° - 23.6°

Focal Plan

One of the most ambitious part of LSST:

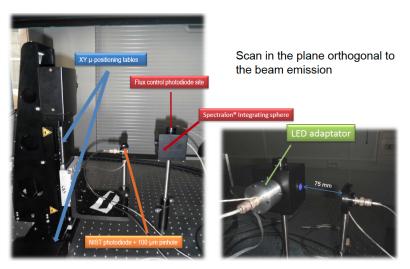
- \bullet 64 cm diameter
- 189 CCD (21 raft of 3x3CCD)
- each raft has is own electronics
- 4096x4096 pixels per raft (3.2 billions of pixels),
- $1px = 10 \ \mu m \text{ size } (0.2 \text{ arcsec})$

- \Rightarrow the response of the CCD focal plane has to be well known :
 - 0.5% level precision on the entire FP
 - 0.2% level precision at a raft scale
- ⇒ Camera Calibration Optical Bench (CCOB)

Camera Calibration Optical Bench

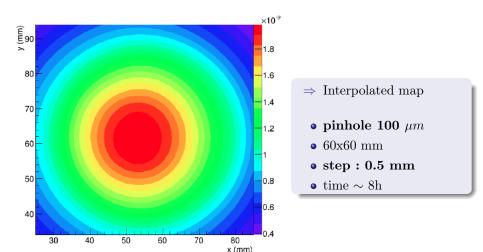
CCOB specification

Large Beam

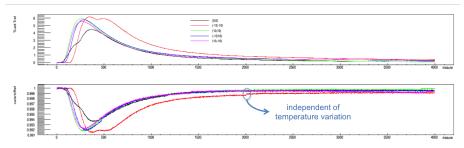

- beam diameter $\sim 20 \text{ mm}$
- scan entire FP
- deliver camera first light
 - \rightarrow bad and dead pixels
- measured the pixel to pixel relative response
- \bullet Should be deliver on 09/2016
- \Rightarrow necessite flux control at 0.1 %

Thin Beam

- beam diameter $\sim 1 \text{ mm}$
- optics study:
 - precision of $20\mu m$ on relative position
- ghost:
 - precision 1% on reflection coeficient
- \bullet Should be deliver on 09/2019


Test Bench

• We need to characterize the beam at LSST pixel scale.

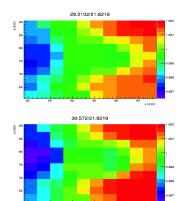

Beam map - $100\mu m$ pinhole

- we shown that beam fluctuation $> 100 \mu m$,
- using bilinear interpolation methode: scaning step of 0.5 mm,
- 1 scan take a lot of time : temperature variation.

Beam stability as a function of temperature (1)

- No scanning, 1000 mesures $\Rightarrow \sim 1$ h
- \bullet temperature measurement using thermocouple (precision $\sim 0.1 ^{\circ} C)$,
- heating cable is around the LED adaptator.

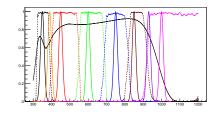
Results:

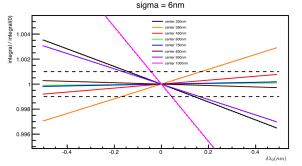

- Good correlation between T_{LED} and measured flux
- $\Delta F lux \sim 0.14\%$ per deg
- \Rightarrow Could we correct temperature effect?

Beam stability as a function of temperature (2)

- Scanning, 30x30 mm, step = $3mm \Rightarrow \sim 3min$,
- 12 + 1 measure (reference $\langle T \rangle = 21.8$)

•
$$Flux(px) = \frac{flux(px)}{fluxRef(px)} * \frac{\langle FluxRef \rangle}{\langle Flux \rangle}$$


$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	δT	ΔT	$\Delta F = \delta F_{max} - \delta F_{min}$
21.8	0.032	/	/
26.6	0.20	4.80	$1.0 \ 10^{-3}$
26.5	0.15	4.65	$1.3 \ 10^{-3}$
27.9	0.30	6.07	$1.3 \ 10^{-3}$
27.7	0.34	5.89	$1.9 \ 10^{-3}$
27.7	0.34	5.86	$1.9 \ 10^{-3}$
28.12	0.10	6.30	$1.5 \ 10^{-3}$
29.21	0.29	7.39	$4.5 \ 10^{-3}$
29.22	0.18	7.39	$4.3 \ 10^{-3}$
29.21	0.11	7.39	$4.4 \ 10^{-3}$
30.62	0.24	8.80	$3.8 \ 10^{-3}$
30.57	0.25	8.75	$5.4 \ 10^{-3}$



- spatial inhomogeneities : $\Delta T < 7^{\circ} \Leftrightarrow \Delta F < 2.10^{-3}$,
- spatial dependence \Rightarrow difficulties for temperature correction

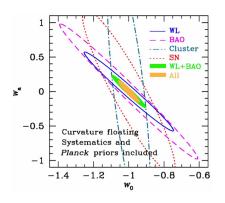
Wavelenght shift as a function of temperature

- LED spectra = gaussienne (λ_0, σ) ,
- λ_0 vary from 0.05 nm to 0.5 nm for $\Delta T \sim$ a fiew degrees.

- λ_0 350nm, 390nm and 930nm : $\Delta F > 10^{-3}$ if $|\delta \lambda_0| > 0.1nm$,
- λ_0 1000nm should not be used.

Cosmologie with LSST

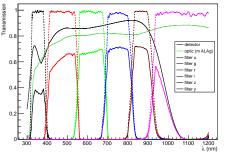
Photometric redshift reconstruction


LSST science goal

4D univers mapping : (α, δ) , z (redshift), time variation.

- Inventory of Solar system :
 - hazardous asteroids,
 - Long Period Comets ...
- Mapping the Milky Way :
 - stellar population (observation of billions of stars)
 - \rightarrow star formation, evolution ...
- Transient object :
 - gamma ray burst, AGN ...
- Probe Dark mater,
- Probe Dark Energy (p<0)

$$p = w\rho = [w_o + w_a(1-a)]\rho$$


• BAO, supernovae, weak lensing ...

LSST : CCOB and photo-z

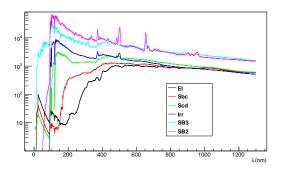
What do we need?

- a huge statistics : not a problem for LSST
- a high precision on redshift measurement.

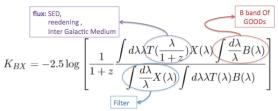
LSST specification on $|\Delta z| = |\frac{z_p - z_s}{1 + z_s}|$:

- 0.05 random error (RMS),
- bias $< 3.10^{-3}$,
- % outliers < 10%.

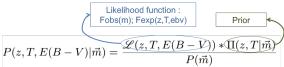
LSST: 6 photometric bands ugrizy


- \Rightarrow photometric redshift
 - machine learning method
 - template fitting method
 - \rightarrow we compute the integrated flux in each bands,
 - → we compare expected flux to some known emission spectrum at a range of redshift.

The simulated catalog


1) Simulation Catalog

- \bullet $\Lambda {\rm CDM}$ cosmology is assumed
 - computation of over density
 - luminosity function (Dalhen and al.)
- Absolute Magnitude, color excess E(B-V), z_{true} ,
- 51 galaxies spectral type interpolated between 6 main SED.
 - main spectral type : El, Sbc, Scd, Irr, SB3, SB2.



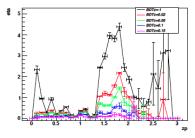
2) Photometrique redshift reconstruction

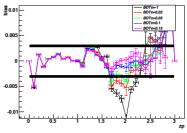
• apparent magnitude : $m_X = MA + K_{BX} + MD$ with :

- error on apparent magnitude : atmosphere, systematics ...
- template fitting method :

 \Rightarrow photometric value z_p , T_p , ebv_p : maximisation over on a 3D grid.

Quality cut

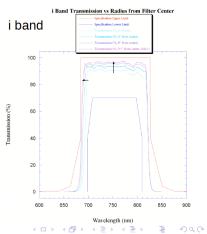

Outliers :
$$|\Delta z| = |\frac{z_p - z_{true}}{1 + z_{true}}| > 0.15$$


Boosted Decision Tree (BDT)

- Learning machine methode :
 - $\rightarrow\,$ training set \sim 450 000 galaxies

•
$$|\Delta z| = \left| \frac{z_p - z_{true}}{1 + z_{true}} \right| < 0.15 \Rightarrow \text{"signal"}$$

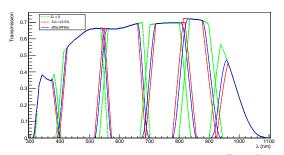
- 17 discriminant variables
 - form variable: Npeak in the z marginalised pdf ...
 - color terme (ex : r-i),
 - \bullet z_p .



Impact of spatial variation

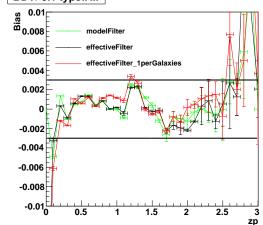
- The photo-z quality could be affected by differents uncertainties on parameters which enter in the likelihood computation :
 - reddening or intergalactic medium law,
 - the SED library,
 - filters

- LSST filters are quite big (78 cm diameter)
- ⇒ coating could'nt be perfect
- ⇒ What happen on photo-z if filters vary?
 - impact of the incidence angle :
 → effective filter
 - slope design modification,
 - impact of spacial variation?



Impact of filters transmission shape

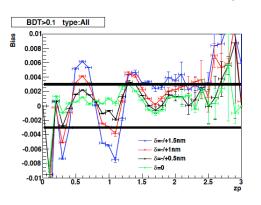
• Due to spatial variation filter could be shifted up to $\pm 2.5\%$ (LSST spec.)


u	g	r	i	Z	у
$\pm 9 \text{ nm}$	$\pm 12~\mathrm{nm}$	$\pm 16~\mathrm{nm}$	$\pm 19~\mathrm{nm}$	$\pm 22~\mathrm{nm}$	$\pm 25~\mathrm{nm}$

- the worst case should be : $\delta\lambda = \{-9, 12, -16, 19, -22, 25\}$ (-+ configuration).
 - 1) computation of a medium effective filter for 10 years of observation,
 - reconstruction of the photometric redshift using differents filters for each galaxies.

Photo-z quality

BDT>0.1 type:All


- One filter per galaxies ⇔ uncertainties on filters measurement :
 - F_{exp} is computed using effective filters,
 - F_{obs} is computed using different fiters for each galaxie
 - \Rightarrow impact on photo-z quality for $0.8 < z_p < 1.3$
 - \Rightarrow if $z_p > 1.9$: higher errors barres.

- Effective filters:
 - no significant impact, except at $z_p \sim 2$
 - still under LSST specification up to $z_p \sim 2.6$

Evolution of filter transmission

• Variations on central weavelenth (filter shift), -+ case :

- translation different for each filter,
- important effect from $\delta_{\lambda} = \pm 1nm$,
- $\delta_{\lambda} = \pm 0.5 nm$ could be a maximal uncertainty to keep the photo-z quality

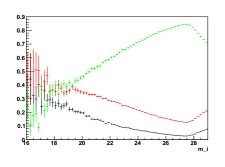
 \Rightarrow How important will be those effect? \rightarrow Cosmology

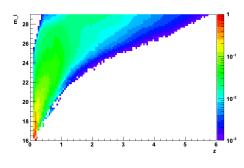
Conclusion

- LSST will observed billions of galaxies which allowed the measurement of BAO scale at many z bins,
 - \rightarrow the redshift of all of those galaxies is needed with a excellent precision.
- \Rightarrow Franzona method for photometric redshift reconstruction :
 - template fitting method form 51 interpolated SED
 - we can reconstructed the redshift in LSST specification up to $z\sim 2.7$
 - impact of filters shape is negligible if filters are well known
 - filters has to be well known, with a precision better the 0.5nm in order to keep a good quality on photometric reconstruction.

Perspectives

- Test the method using an other SED library
- A real catalogue data is in developpement to test the method
- BAO analysis using Franzona tools:
 - computation of power spectra,
 - exctraction of BAO scale,
 - constraintes on dark enery parameters.
 - ⇒ with which precision can we get the BAO scale using our photometric redshift?
 - ⇒ how important are photometric quality variations due to filters transmission shape?


Back up

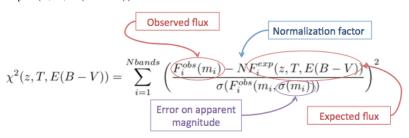

Prior computation

• $\Pi(\mathbf{z}, \mathbf{T}, \mathbf{E}(\mathbf{B} - \mathbf{V}) | \mathbf{m_i})$: probability for a galaxy with an m_i apparent magnitude in the i filter to be at a redshift z, with a spectral type T and color excess $\mathbf{E}(\mathbf{B}-\mathbf{V})$: (Benitez method)

$$\Pi(z, T, E(B-V)|m_i) = P(T|m_i) * P(z|T, m_i)$$

- Computed for 3 spectral type : Elliptic, Spiral and Starburst.
- \rightarrow A spectroscopic sample is needed.

 $P(T|m_i)$


 $P(z|T, m_i)$ (Starburst galaxies)

LSST : CCOB and photo-z

Likelihood computation

$$\mathcal{L}(z, T, E(B-V)) = exp\left[\frac{-1}{2}\chi^{2}(z, T, E(B-V))\right]$$

- 1) Observation $\Rightarrow F_i^{obs}(m_i)$
- 2) 3D gride over z, spectral type T and colore excess E(B-V) $\Rightarrow F_i^{exp}(z, T, E(B-V))$

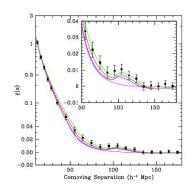
- 3) χ^2 minimisation ($\Leftrightarrow \mathcal{L}$ maximisation)
 - \Rightarrow photometric value z_p , T_p , ebv_p

BAO as a cosmological probe

- Measure of the probability to find a galaxy from an other
 - \Rightarrow correlation function $\xi(r)$.

$$\rightarrow \chi = 100h^{-1}Mpc$$

- First measurement : 2005 (2dFGRS and SDSS)
- A 3D measurements :
 - Position of acoustic peak
 ⇒ Size of the sound horizon rs
 - Transverse direction :


$$\Delta\theta = rs/(1+z)/DA(z)$$

- \Rightarrow Sensitive to angular distance DA(z)
- Radial direction :

$$\Delta z = rs * H(z)/c$$

 \Rightarrow Sensitive to Hubble parameter $\mathbf{H}(\mathbf{z})$:

$$H(z) = H0\sqrt{\Omega_m(1+z)^3 + \Omega_\lambda + (1 - \Omega_m - \Omega_\lambda)^2}$$

