Pricing dilemma in social systems

or why don't successful restaurants raise prices ?

Mirta B. Gordon

mirta.gordon@imag.fr

LIG (Laboratoire d'Informatique de Grenoble)
CNRS and Université de Grenoble

```
    J-P. Nadal (EHESS - ENS Paris)
V. Semeshenko (CONICET and Universidad de Buenos Aires)
    Denis Phan (Université Paris Sorbonne-Paris IV)
```


why successful sellers do not increase their prices?

"... why many successful restaurants do not raise prices even with persistent excess demand? " [Becker (1991)]

why successful sellers do not increase their prices?

"... why many successful restaurants do not raise prices even with persistent excess demand? " [Becker (1991)] other examples:

- bestseller books and music
- theater plays or films
- sporting events

why successful sellers do not increase their prices?

"... why many successful restaurants do not raise prices even with persistent excess demand? " [Becker (1991)] other examples:

- bestseller books and music
- theater plays or films
- sporting events
common feature :
- fashionable ("bandwagon") goods
\Rightarrow importance of social interactions

why successful sellers do not increase their prices?

explanation: modeling the demand and the offer

plan

why successful sellers do not increase their prices?

explanation : modeling the demand and the offer

plan

- demand of a good by a population of interacting heterogeneous agents (customers)

why successful sellers do not increase their prices?

explanation : modeling the demand and the offer

plan

- demand of a good by a population of interacting heterogeneous agents (customers)
- optimal supply by a monopolist informed of the characteristics of the customers' population

why successful sellers do not increase their prices?

explanation : modeling the demand and the offer

plan

- demand of a good by a population of interacting heterogeneous agents (customers)
- optimal supply by a monopolist informed of the characteristics of the customers' population
- pricing strategies

why successful sellers do not increase their prices?

explanation : modeling the demand and the offer

plan

- demand of a good by a population of interacting heterogeneous agents (customers)
- optimal supply by a monopolist informed of the characteristics of the customers' population
- pricing strategies
- experimental tests

the demand

Schelling, Föllmer, Granovetter, Durlauf (since 1971)
generic properties \rightarrow Gordon et al. (2009)

the demand

Schelling, Föllmer, Granovetter, Durlauf (since 1971)
generic properties \rightarrow Gordon et al. (2009)
customers' model with social interactions

the demand

```
Schelling, Föllmer, Granovetter, Durlauf (since 1971)
generic properties }->\mathrm{ Gordon et al. (2009)
```

customers' model with social interactions

- N potential customers (single good)
- P : unitary price (monopolistic pricing)
- $N \eta$: number of buyers (η : fraction of buyers)

the demand

```
Schelling, Föllmer, Granovetter, Durlauf (since 1971)
generic properties }->\mathrm{ Gordon et al. (2009)
```

customers' model with social interactions

- N potential customers (single good)
- P : unitary price (monopolistic pricing)
- $N \eta$: number of buyers (η : fraction of buyers)
- idiosyncratic reservation prices $H_{i}(i=1,2, \ldots, N)$
- mutual influence with strength $J>0$
\Rightarrow the "value" of the good for individual i increases with η

$$
H_{i}+J \eta \Rightarrow \text { "bandwagon good" }
$$

the demand
basic assumptions

the demand

basic assumptions
the reservation prices H_{i} are distributed $(1 \leq i \leq N)$ $\mathcal{P}\left(H_{i}\right) \rightarrow$ mean H, variance σ

> convenient normalization

$$
p=\frac{P}{\sigma} ; h_{i}=\frac{H_{i}}{\sigma} ; j=\frac{J}{\sigma}
$$

$$
\Rightarrow \quad h_{i}=h+x_{i}
$$

the demand

basic assumptions
the reservation prices H_{i} are distributed $(1 \leq i \leq N)$ $\mathcal{P}\left(H_{i}\right) \rightarrow$ mean H, variance σ
convenient normalization

$$
\begin{aligned}
p & =\frac{P}{\sigma} ; h_{i}=\frac{H_{i}}{\sigma} ; j=\frac{J}{\sigma} \\
& \Rightarrow \quad h_{i}=h+x_{i}
\end{aligned}
$$

the "value" of the good for individual i in adimensional units is :

$$
h+x_{i}+j \eta
$$

with pdf $f\left(x_{i}\right)$ of zero mean and unit variance

the demand

basic assumptions
utility or payoff $=$ value - price

- when buying : $u_{i}=\left(h+x_{i}+j \eta\right)-p$
- when not buying : $u_{i}=0$

the demand

basic assumptions
utility or payoff $=$ value - price

- when buying : $u_{i}=\left(h+x_{i}+j \eta\right)-p$
- when not buying : $u_{i}=0$
agent's i rational decision is :
- to buy if $u_{i}>0$
- not to buy if $u_{i}<0$

the demand

basic assumptions
utility or payoff $=$ value - price

- when buying : $u_{i}=\left(h+x_{i}+j \eta\right)-p$
- when not buying : $u_{i}=0$
agent's i rational decision is :
- to buy if $u_{i}>0$
- not to buy if $u_{i}<0$
- decision : $s_{i}=\operatorname{sign}\left(u_{i}\right)$
\sim Ising model with quenched disorder x_{i} (RFIM)

the demand

equilibria
underlying energy \Rightarrow fixed points

$$
\begin{aligned}
\mathcal{P} \text { of buying } & =\mathcal{P}\left(h+x_{i}+j \eta-p>0\right)=\mathcal{P}\left(x_{i}>p-h-j \eta\right) \\
\eta & =\int_{z}^{\infty} f(x) d x \quad \text { with } \quad z \equiv p-h-j \eta
\end{aligned}
$$

the demand

equilibria
underlying energy \Rightarrow fixed points
\mathcal{P} of buying $=\mathcal{P}\left(h+x_{i}+j \eta-p>0\right)=\mathcal{P}\left(x_{i}>p-h-j \eta\right)$

$$
\eta=\int_{z}^{\infty} f(x) d x \quad \text { with } \quad z \equiv p-h-j \eta
$$

method

- invert $\eta(z): z=\Gamma(\eta)$ (Γ is a monotonic decreasing function)
- define $\mathcal{D}(\eta, j) \equiv \Gamma(\eta)+j \eta$
- solve $p-h=\mathcal{D}(\eta ; j)$

the demand

equilibria
underlying energy \Rightarrow fixed points

- for illustration \rightarrow logistic $\mathcal{P}(h)$

$$
\begin{aligned}
\mathcal{P}(h) & =\frac{1}{1+e^{-2 \beta h}} \\
f(x) & \propto \frac{1}{\cosh ^{2}(\beta x)}
\end{aligned}
$$

the demand

equilibria
underlying energy \Rightarrow fixed points

- for illustration \rightarrow logistic $\mathcal{P}(h)$

$$
\text { solve } h-p=\mathcal{D}(\eta ; j)
$$

$$
\begin{aligned}
\mathcal{P}(h) & =\frac{1}{1+e^{-2 \beta h}} \\
f(x) & \propto \frac{1}{\cosh ^{2}(\beta x)}
\end{aligned}
$$

$j>j_{B} \Rightarrow \mathcal{D}(\eta, j)$ not monotonic

phase diagram of the demand

phase diagram of the demand

$j_{B} \approx 2$ for most distributions

phase diagram of the demand

$$
\hat{p} \equiv p-h \text { vs. } j
$$

$$
j_{B}=2.2, \quad \hat{p}_{B}=1.1>0 \Rightarrow p_{B}>h_{B}!
$$

phase diagram of the demand

$$
\hat{p} \equiv p-h \text { vs. } j
$$

η vs. $(p-h)$

$$
j_{B}=2.2, \quad \hat{p}_{B}=1.1>0 \Rightarrow p_{B}>h_{B}!
$$

phase diagram of the demand
generic properties (Gordon et al. 2012)

phase diagram of the demand

generic properties (Gordon et al. 2012)

- for j (social interaction) large enough $\left(j>j_{B}\right)$
\Rightarrow multiple demand equilibria for a given price

phase diagram of the demand

generic properties (Gordon et al. 2012)

- for j (social interaction) large enough $\left(j>j_{B}\right)$
\Rightarrow multiple demand equilibria for a given price
- for $j<j_{B}$ the demand is driven by the price
- for $j>j_{B}$ the high-demand branches require coordination of the customers

phase diagram of the demand

generic properties (Gordon et al. 2012)

- for j (social interaction) large enough $\left(j>j_{B}\right)$
\Rightarrow multiple demand equilibria for a given price
- for $j<j_{B}$ the demand is driven by the price
- for $j>j_{B}$ the high-demand branches require coordination of the customers
- number of possible coexistent equilibria :
$1+$ number of modes of $f(x)$

phase diagram of the demand

generic properties (Gordon et al. 2012)

- for j (social interaction) large enough $\left(j>j_{B}\right)$
\Rightarrow multiple demand equilibria for a given price
- for $j<j_{B}$ the demand is driven by the price
- for $j>j_{B}$ the high-demand branches require coordination of the customers
- number of possible coexistent equilibria :
$1+$ number of modes of $f(x)$
- with contrarians : no energy function (Gonçalves et al. in progress)
- fixed points are reached through oscillations
- if enough contrarians \Rightarrow cycles

phase diagram of the demand

back to Becker (1991)

"... why many successful restaurants do not raise prices even with persistent excess demand? "

phase diagram of the demand

back to Becker (1991)

"... why many successful restaurants do not raise prices even with persistent excess demand? "

Becker's intuition :
social interactions \Rightarrow non-monotonic
demand curves

phase diagram of the demand

back to Becker (1991)

"... why many successful restaurants do not raise prices even with persistent excess demand? "

Becker's intuition :
social interactions \Rightarrow non-monotonic demand curves

mathematical model :
allows to explore all the possibilities and the seller's optimal strategy

the supply
 optimal pricing strategies (Gordon et al. 2013)

the model

- single seller (monopole)
- profit $=N \eta(p-c) \equiv N \pi$
- assumption : cost=0 (origin of the monetary values)

the supply
 optimal pricing strategies (Gordon et al. 2013)

the model

- single seller (monopole)
- profit $=N \eta(p-c) \equiv N \pi$
- assumption : cost=0 (origin of the monetary values)
profit optimization \Rightarrow optimal price p
- maximize $\pi(\eta, p) \equiv p \eta$ under the condition $\eta=\eta^{c}(p-h)$ (from customer's model)
- extremum : $\partial \pi / \partial p=0$
- maximum : $\partial^{2} \pi / \partial p^{2}<0$

optimal supply

phase diagram at optimal price p

optimal supply

phase diagram at optimal price p

optimal supply

phase diagram at optimal price p

two relative max of Π

between $h_{-}(j)$ and $h_{+}(j)$

- strategy change at $h=h_{c h}(j)$

$$
\begin{array}{ll}
h \leq h_{c h}(j) & \begin{array}{l}
\text { low- } \eta, \text { high } p \\
\text { risk dominant }
\end{array} \\
h \geq h_{c h}(j) & \begin{array}{l}
\text { high- } \eta, \text { low } p \\
\text { Pareto optimal }
\end{array}
\end{array}
$$

optimal supply

phase diagram at optimal price p

two relative max of Π

between $h_{-}(j)$ and $h_{+}(j)$

- strategy change at $h=h_{c h}(j)$

$$
\begin{array}{ll}
h \leq h_{c h}(j) & \begin{array}{l}
\text { low- } \eta, \text { high } p \\
\text { risk dominant }
\end{array} \\
h \geq h_{c h}(j) & \begin{array}{l}
\text { high- } \eta, \text { low } p \\
\text { Pareto optimal }
\end{array}
\end{array}
$$

boundaries

- $h_{0}(j)$: boundary of high- η maximum $p<0$ if taget is high $-\eta$ and $h<h_{0}(j)$
- $h_{L}(j)$ and $h_{m}(j)$: lines where low- η maxima change characteristics

optimal supply

phase diagram at optimal price p

$$
j<j_{A}
$$

- unique optimum

optimal supply

phase diagram at optimal price p

$$
j<j_{A}
$$

- unique optimum

$$
j_{A}<j<j_{B}
$$

- customers : single equilibrium
- the seller selects the number of buyers : p drives the market

optimal supply

phase diagram at optimal price p

$$
j<j_{A}
$$

- unique optimum

$$
j_{A}<j<j_{B}
$$

- customers : single equilibrium
- the seller selects the number of buyers: p drives the market

$$
j>j_{B}
$$

- customers : multiple equilibria for h between the red lines - risk of coordination failure if the target is high- η

optimal supply

phase diagram at optimal price p

if target is low- η

$$
\left(h<h_{-}(j)\right)
$$

optimal supply

phase diagram at optimal price p

if target is low- η

$$
\left(h<h_{-}(j)\right)
$$

$$
j_{B}<j<j_{C}
$$

- single relative max of Π

$$
j>j c
$$

- two relative max of Π (on the low- η manifold)

optimal supply

phase diagram at optimal price p

if target is high- η
(optimal for $h>h_{c h}(j)$)

optimal supply

phase diagram at optimal price p

if target is high- η
(optimal for $h>h_{c h}(j)$)

$$
j>j_{B}
$$

- requires customers coordination
- very large region of uncertainty
- coordination failure
(empty restaurant)
\Rightarrow profit much lower than
expected

optimal pricing strategies

targeting the high- η customers equilibrium

optimal pricing strategies

targeting the high- η customers equilibrium

$$
j=3.5, h=-1.2
$$

- optimal strategy, $p_{+}=0.81, \eta_{+}=0.86 \Rightarrow \Pi=0.70$
- without coordination : $\eta=0.03 \Rightarrow \Pi=0.0248163$
- pricing strategy : start with $p^{*} \ll p_{+}, \eta^{*}=0.97 \Rightarrow \Pi^{*}=0.26$ and increase p

optimal pricing strategies

targeting the high- η customers equilibrium

$$
j=3.5, h=-1.4
$$

- optimal strategy, $p_{+}=0.62, \eta_{+}=0.85 \Rightarrow \Pi=0.53$
- without coordination : $\eta=0.03 \Rightarrow \Pi=0.019$
- pricing strategy targeting high- η : start with $p^{*}=0.064, \eta^{*}=0.97 \Rightarrow \Pi^{*}=0.06$
- targeting the low $-\eta$ sub-optimum, $p=0.41, \eta=0.05 \Rightarrow \Pi=0.02$
- if coordination, $p=0.41, \eta=0.93 \Rightarrow \Pi=0.38$

optimal pricing strategies

targeting the high- η customers equilibrium

$$
j=3.5, h=-1.5
$$

- optimal strategy, $p_{+}=0.53, \eta_{+}=0.84 \Rightarrow \Pi=0.44$
- without coordination : $\eta=0.03 \Rightarrow \Pi=0.0156$
- pricing strategy targeting high- η would require negative p^{*})
- sub-optimum, $p=0.45, \eta=0.04 \Rightarrow \Pi=0.0158$
- if coordination, $p=0.45, \eta=0.90 \Rightarrow \Pi=0.40$

experimental results

unpredictability of collective outcomes due to social interactions

- Schelling's dying seminar setting in experimental economics (Semeshenko et al., 2010)
- coordination depends strongly on available information
- complete information (number of buyers) favors coordination

experimental results

unpredictability of collective outcomes due to social interactions

- Schelling's dying seminar setting in experimental economics (Semeshenko et al., 2010)
- coordination depends strongly on available information
- complete information (number of buyers) favors coordination
- why it is difficult to predict success in cultural markets? (Salganik et al 2006, 2009)
- information about the others' choices increases the popularity of the most popular songs

conclusion

social interactions

- demand curves are non-monotonic
- optimal supply is unpredictable (for some large range of parameters)
- empty vs overcrowded restaurants
- success vs flop of cultural products
- possible pricing strategies (under complete information)

conclusion

social interactions

- demand curves are non-monotonic
- optimal supply is unpredictable (for some large range of parameters)
- empty vs overcrowded restaurants
- success vs flop of cultural products
- possible pricing strategies (under complete information)

to be done :

- supply with incomplete information
- pricing with learning customers
- networks
- competing sellers
-

Thank you!

References :

- M.B.Gordon. Modelos matematicos en ciencias humanas : Modelos de memoria y de coaliciones (en español) In Cognito (2009), 3(3), 39-61.
- J-P. Nadal, D. Phan, M. B. Gordon, J. Vannimenus. Multiple equilibria in a monopoly market with heterogeneous agents and externalities. Quantitative Finance vol 5, N6 (2005) 557-568.
- M. B. Gordon, J-P. Nadal, D. Phan, V. Semeshenko. Discrete choices under social influence : generic properties. Mathematical Models and Methods in Applied Sciences (M3AS) 19 (Supplementary Issue 1) (2009)
- M. B. Gordon, J-P. Nadal, D. Phan, V. Semeshenko. Entanglement between Demand and Supply in Markets with Bandwagon Goods. Journal of Statistical Physics (2013) 151 : 494-522

