emand

ptimal supply

pricing strategie

experimantal result

conclusion

Pricing dilemma in social systems or why don't successful restaurants raise prices ?

Mirta B. Gordon mirta.gordon@imag.fr

LIG (Laboratoire d'Informatique de Grenoble) CNRS and Université de Grenoble

J-P. Nadal (EHESS - ENS Paris) V. Semeshenko (CONICET and Universidad de Buenos Aires) Denis Phan (Université Paris Sorbonne-Paris IV)

Grenoble — April 2014

why successful sellers do not increase their prices?

"... why many successful restaurants do not raise prices even with persistent excess demand ? " $_{\rm [Becker\,(1991)]}$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

why successful sellers do not increase their prices?

"... why many successful restaurants do not raise prices even with persistent excess demand ? " $_{\rm [Becker\,(1991)]}$

other examples :

bestseller books and music

÷

- theater plays or films
- sporting events

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

why successful sellers do not increase their prices?

"... why many successful restaurants do not raise prices even with persistent excess demand ? " $_{\rm [Becker\,(1991)]}$

other examples :

- bestseller books and music
- theater plays or films
- sporting events

common feature :

fashionable ("bandwagon") goods
 ⇒ importance of social interactions

l op

timal supply

pricing strategie

experimantal result

conclusion

why successful sellers do not increase their prices?

explanation : modeling the demand and the offer

plan

opt

timal supply

pricing strategie

xperimantal result

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

conclusion

why successful sellers do not increase their prices?

explanation : modeling the demand and the offer

plan

 demand of a good by a population of interacting heterogeneous agents (customers)

why successful sellers do not increase their prices?

explanation : modeling the demand and the offer

plan

- demand of a good by a population of interacting heterogeneous agents (customers)
- optimal supply by a monopolist informed of the characteristics of the customers' population

pricing strategie

why successful sellers do not increase their prices?

explanation : modeling the demand and the offer

plan

- demand of a good by a population of interacting heterogeneous agents (customers)
- optimal supply by a monopolist informed of the characteristics of the customers' population

• pricing strategies

pricing strategie

why successful sellers do not increase their prices?

explanation : modeling the demand and the offer

plan

- demand of a good by a population of interacting heterogeneous agents (customers)
- optimal supply by a monopolist informed of the characteristics of the customers' population
- pricing strategies
- experimental tests

pricing strategies

the demand

Schelling, Föllmer, Granovetter, Durlauf (since 1971) generic properties \rightarrow Gordon et al. (2009)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

the demand

Schelling, Föllmer, Granovetter, Durlauf (since 1971) generic properties \rightarrow Gordon et al. (2009)

customers' model with social interactions

the demand

Schelling, Föllmer, Granovetter, Durlauf (since 1971) generic properties \rightarrow Gordon et al. (2009)

customers' model with social interactions

- *N* potential customers (single good)
- *P* : unitary price (monopolistic pricing)
- $N\eta$: number of buyers (η : fraction of buyers)

the demand

Schelling, Föllmer, Granovetter, Durlauf (since 1971) generic properties \rightarrow Gordon et al. (2009)

customers' model with social interactions

- *N* potential customers (single good)
- *P* : unitary price (monopolistic pricing)
- $N\eta$: number of buyers (η : fraction of buyers)

- idiosyncratic reservation prices H_i (i = 1, 2, ..., N)
- mutual influence with strength J > 0
 ⇒ the "value" of the good for individual i increases with η

$$H_i + J\eta \Rightarrow$$
 "bandwagon good"

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

the demand

basic assumptions

the reservation prices H_i are distributed $(1 \le i \le N)$ $\mathcal{P}(H_i) \rightarrow \text{mean } H$, variance σ

convenient normalization

 $p = \frac{P}{\sigma}; h_i = \frac{H_i}{\sigma}; j = \frac{J}{\sigma}$

$$\Rightarrow h_i = h + x_i$$

pricing strategies

conclusion

the demand

basic assumptions

the reservation prices H_i are distributed $(1 \le i \le N)$ $\mathcal{P}(H_i) \rightarrow \text{mean } H$, variance σ

convenient normalization

 $p = \frac{P}{\sigma}; h_i = \frac{H_i}{\sigma}; j = \frac{J}{\sigma}$

$$\Rightarrow h_i = h + x_i$$

the "value" of the good for individual i in adimensional units is :

$$h + x_i + j\eta$$

with pdf $f(x_i)$ of zero mean and unit variance

demand op

pricing strategie

conclusion

the demand

basic assumptions

utility or payoff = value - price

- when buying : $u_i = (h + x_i + j\eta) p$
- when not buying : $u_i = 0$

demand o

pricing strategies

conclusion

the demand

basic assumptions

utility or payoff = value - price

- when buying : $u_i = (h + x_i + j\eta) p$
- when not buying : $u_i = 0$

agent's *i* rational decision is :

- to buy if $u_i > 0$
- not to buy if $u_i < 0$

demand o

the demand

basic assumptions

utility or payoff = value - price

- when buying : $u_i = (h + x_i + j\eta) p$
- when not buying : $u_i = 0$

agent's *i* rational decision is :

- to buy if $u_i > 0$
- not to buy if $u_i < 0$
- decision : $s_i = \operatorname{sign}(u_i)$

 \sim Ising model with quenched disorder x_i (RFIM)

demand

the demand equilibria

underlying energy \Rightarrow fixed points

 \mathcal{P} of buying = $\mathcal{P}(h + x_i + j\eta - p > 0) = \mathcal{P}(x_i > p - h - j\eta)$

$$\eta = \int_{z}^{\infty} f(x) dx$$
 with $z \equiv p - h - j\eta$

demand

the demand equilibria

underlying energy \Rightarrow fixed points

$$\mathcal{P}$$
 of buying = $\mathcal{P}(h + x_i + j\eta - p > 0) = \mathcal{P}(x_i > p - h - j\eta)$

$$\eta = \int_{z}^{\infty} f(x) dx$$
 with $z \equiv p - h - j\eta$

method

- invert $\eta(z)$: $z = \Gamma(\eta)$ (Γ is a monotonic decreasing function)
- define $\mathcal{D}(\eta, j) \equiv \Gamma(\eta) + j\eta$
- solve $p h = \mathcal{D}(\eta; j)$

pricing strategies

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

the demand equilibria

underlying energy \Rightarrow fixed points

- for illustration ightarrow logistic $\mathcal{P}(h)$

$$\mathcal{P}(h) = rac{1}{1 + e^{-2\beta h}}$$
 $f(x) \propto rac{1}{\cosh^2(eta x)}$

demand o

timal supply

pricing strategie

experimantal result

conclusion

the demand equilibria

underlying energy \Rightarrow fixed points

- for illustration ightarrow logistic $\mathcal{P}(h)$

$$\mathcal{P}(h) = rac{1}{1 + e^{-2\beta h}}$$
 $f(x) \propto rac{1}{\cosh^2(\beta x)}$

solve $h - p = \mathcal{D}(\eta; j)$

 $j > j_B \Rightarrow \mathcal{D}(\eta, j)$ not monotonic

phase diagram of the demand

▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 9 Q (?)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

phase diagram of the demand

 $j_B \approx 2$ for most distributions

pricing strategie

experimantal results

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

conclusion

phase diagram of the demand

 $\hat{p} \equiv p - h$ vs. j

 $j_B = 2.2$, $\hat{p}_B = 1.1 > 0 \Rightarrow p_B > h_B!$

phase diagram of the demand

 $\hat{p} \equiv p - h$ vs. j

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $j_B = 2.2$, $\hat{p}_B = 1.1 > 0 \Rightarrow p_B > h_B!$

demand

ptimal supply

pricing strategies

experimantal results

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

conclusion

phase diagram of the demand

generic properties (Gordon et al. 2012)

phase diagram of the demand generic properties (Gordon et al. 2012)

• for j (social interaction) large enough $(j > j_B)$ \Rightarrow multiple demand equilibria for a given price

phase diagram of the demand generic properties (Gordon et al. 2012)

- for j (social interaction) large enough $(j > j_B)$ \Rightarrow multiple demand equilibria for a given price
 - for $j < j_B$ the demand is driven by the price
 - for j > j_B the high-demand branches require coordination of the customers

phase diagram of the demand generic properties (Gordon et al. 2012)

- for j (social interaction) large enough $(j > j_B)$ \Rightarrow multiple demand equilibria for a given price
 - for $j < j_B$ the demand is driven by the price
 - for $j > j_B$ the high-demand branches require coordination of the customers
- number of possible coexistent equilibria :
 - 1 + number of modes of f(x)

phase diagram of the demand generic properties (Gordon et al. 2012)

- for j (social interaction) large enough $(j > j_B)$ \Rightarrow multiple demand equilibria for a given price
 - for $j < j_B$ the demand is driven by the price
 - for $j > j_B$ the high-demand branches require coordination of the customers
- number of possible coexistent equilibria :
 - 1 + number of modes of f(x)
- with contrarians : no energy function (Gonçalves et al. in progress)
 - fixed points are reached through oscillations
 - if enough contrarians \Rightarrow cycles

demand

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

phase diagram of the demand back to Becker (1991)

"... why many successful restaurants do not raise prices even with persistent excess demand? "

demand

phase diagram of the demand back to Becker (1991)

"... why many successful restaurants do not raise prices even with persistent excess demand? "

Becker's intuition : social interactions \Rightarrow non-monotonic demand curves

phase diagram of the demand back to Becker (1991)

"... why many successful restaurants do not raise prices even with persistent excess demand? "

Becker's intuition : social interactions \Rightarrow non-monotonic demand curves

mathematical model : allows to explore all the possibilities and the seller's optimal strategy

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

the supply

optimal pricing strategies (Gordon et al. 2013)

the model

- single seller (monopole)
- profit = $N\eta (p-c) \equiv N\pi$
- assumption : cost=0 (origin of the monetary values)

the supply

optimal pricing strategies (Gordon et al. 2013)

the model

- single seller (monopole)
- profit = $N\eta (p-c) \equiv N\pi$
- assumption : cost=0 (origin of the monetary values)

profit optimization \Rightarrow optimal price p

- maximize π(η, p) ≡ p η under the condition η = η^c(p − h) (from customer's model)
- extremum : $\partial \pi / \partial p = 0$
- maximum : $\partial^2 \pi / \partial p^2 < 0$

introduction demand **optimal supply** pricing strategies experin

experimantal results

conclusion

optimal supply

phase diagram at optimal price p

mand

optimal supply

pricing strategies

experimantal result

<ロト <回ト < 注ト < 注ト

æ

conclusion

optimal supply

phase diagram at optimal price p

pricing strategie

optimal supply

phase diagram at optimal price p

two relative max of Π

between $h_{-}(j)$ and $h_{+}(j)$

- strategy change at $h = h_{ch}(j)$

 $h \le h_{ch}(j)$ low- η , high prisk dominant $h \ge h_{ch}(j)$ high- η , low pPareto optimal

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

mand

optimal supply

pricing strategie

experimantal result

conclusion

optimal supply

phase diagram at optimal price p

two relative max of Π

between $h_{-}(j)$ and $h_{+}(j)$

- strategy change at $h = h_{ch}(j)$

 $h \le h_{ch}(j)$ low- η , high prisk dominant $h \ge h_{ch}(j)$ high- η , low pPareto optimal

イロト 不得 トイヨト イヨト

э

boundaries

- $h_0(j)$: boundary of high- η maximum p < 0 if taget is high- η and $h < h_0(j)$

- $h_L(j)$ and $h_m(j)$: lines where low- η maxima change characteristics

emand

optimal supply

pricing strategies

experimantal result

conclusion

optimal supply

phase diagram at optimal price p

 $j < j_A$

<ロト <回ト < 注ト < 注ト

æ

- unique optimum

lemand

optimal supply

pricing strategie

experimantal result

conclusion

optimal supply

phase diagram at optimal price p

 $j < j_A$

- unique optimum

 $j_A < j < j_B$

 customers : single equilibrium
 the seller selects the number of buyers : p drives the market

(日)、

э

emand

optimal supply

pricing strategie

experimantal result

conclusion

optimal supply

phase diagram at optimal price p

 $j < j_A$

- unique optimum

 $j_A < j < j_B$

 - customers : single equilibrium
 - the seller selects the number of buyers : p drives the market

$j > j_B$

- customers : multiple equilibria for *h* between the red lines
- risk of coordination failure if the target is high-η

emand

optimal supply

pricing strategies

experimantal result

conclusion

optimal supply

phase diagram at optimal price p

if target is low- η ($h < h_{-}(j)$)

(日) (同) (日) (日)

lemand

optimal supply

pricing strategie

conclusion

optimal supply

if target is low- η ($h < h_{-}(j)$)

 $j_B < j < j_C$

- single relative max of Π

 $j > j_C$

- two relative max of Π (on the low- η manifold)

(日) (同) (日) (日)

э

emand

optimal supply

oricing strategi

conclusion

optimal supply

phase diagram at optimal price p

if target is high- η (optimal for $h > h_{ch}(j)$)

(日) (同) (日) (日)

lemand

optimal supply

pricing strategie

conclusion

optimal supply

phase diagram at optimal price p

if target is high- η (optimal for $h > h_{ch}(j)$)

 $j > j_B$

- requires customers coordination

- very large region of uncertainty
- coordination failure (empty restaurant)
 ⇒ profit much lower than expected

(日)、

э

and

ptimal supply

pricing strategies

experimantal result

conclusion

optimal pricing strategies

targeting the high- η customers equilibrium

nd

timal supply

pricing strategies

experimantal results

conclusion

optimal pricing strategies

targeting the high- η customers equilibrium

- optimal strategy, $p_+ = 0.81, \eta_+ = 0.86 \Rightarrow \Pi = 0.70$
- without coordination : $\eta = 0.03 \Rightarrow \Pi = 0.0248163$
- pricing strategy : start with $p^* \ll p_+, \eta^* = 0.97 \Rightarrow \Pi^* = 0.26$ and increase p

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

nd

timal supply

pricing strategies

experimantal results

conclusion

optimal pricing strategies

targeting the high- η customers equilibrium

- optimal strategy, $p_+=0.62, \eta_+=0.85 \Rightarrow \Pi=0.53$
- without coordination : $\eta = 0.03 \Rightarrow \Pi = 0.019$
- pricing strategy targeting high- η : start with $p^* = 0.064, \eta^* = 0.97 \Rightarrow \Pi^* = 0.06$

- targeting the low- η sub-optimum, $p = 0.41, \eta = 0.05 \Rightarrow \Pi = 0.02$

- if coordination, $p = 0.41, \eta = 0.93 \Rightarrow \Pi = 0.38$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

nd

timal supply

pricing strategies

conclusion

optimal pricing strategies

targeting the high- η customers equilibrium

- optimal strategy, $p_+=0.53, \eta_+=0.84 \Rightarrow \Pi=0.44$
- without coordination : $\eta = 0.03 \Rightarrow \Pi = 0.0156$
- pricing strategy targeting high- η would require negative p^*)
- sub-optimum, p = 0.45, $\eta = 0.04 \Rightarrow \Pi = 0.0158$
- if coordination, $p = 0.45, \eta = 0.90 \Rightarrow \Pi = 0.40$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

experimental results

unpredictability of collective outcomes due to social interactions

- Schelling's dying seminar setting in experimental economics (Semeshenko et al., 2010)
 - coordination depends strongly on available information
 - complete information (number of buyers) favors coordination

experimental results

unpredictability of collective outcomes due to social interactions

- Schelling's dying seminar setting in experimental economics (Semeshenko et al., 2010)
 - coordination depends strongly on available information
 - complete information (number of buyers) favors coordination

- why it is difficult to predict success in cultural markets? (Salganik et al 2006, 2009)
 - information about the others' choices increases the popularity of the most popular songs

conclusion

social interactions

- demand curves are non-monotonic
- optimal supply is unpredictable (for some large range of parameters)
 - empty vs overcrowded restaurants
 - success vs flop of cultural products
- possible pricing strategies (under complete information)

conclusion

social interactions

- demand curves are non-monotonic
- optimal supply is unpredictable (for some large range of parameters)
 - empty vs overcrowded restaurants
 - success vs flop of cultural products
- possible pricing strategies (under complete information)

to be done :

- supply with incomplete information
- pricing with learning customers
- networks
- competing sellers
- ...

Thank you !

References :

- M.B.Gordon. Modelos matematicos en ciencias humanas : Modelos de memoria y de coaliciones (en español) In Cognito (2009), 3(3), 39-61.
- J-P. Nadal, D. Phan, M. B. Gordon, J. Vannimenus. *Multiple equilibria in a monopoly market with heterogeneous agents and externalities.* Quantitative Finance vol 5, N6 (2005) 557-568.
- M. B. Gordon, J-P. Nadal, D. Phan, V. Semeshenko. *Discrete choices under social influence : generic properties*. Mathematical Models and Methods in Applied Sciences (M3AS) 19 (Supplementary Issue 1) (2009)
- M. B. Gordon, J-P. Nadal, D. Phan, V. Semeshenko. Entanglement between Demand and Supply in Markets with Bandwagon Goods. Journal of Statistical Physics (2013) 151: 494-522