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# Active matter absorbs energy from the environment or internal fuel tanks and use it to carry out motion
s Energy i1s partially transformed into mechanical work and partially dissipated in form of heat

# Units interact directly or through disturbances propagated in the medium

s Conservative forces and thermal fluctuations are complemented by non-conservative forces

# Many examples: highly deformable soft solids, viscoelastic fluids... (biological/non-biological origin)

pm - length scales -

cytoskeleton bacterial suspensions swarms of animals

images from WikiPedia
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Active matter can generate mot
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s Asymmetric motors propelled by a bath of bacteria

s Targeted delivery of colloids by swimming bacteria
First, simulation (L. Angelani et al. 2009):
net rotary counterclockwise motion of the gear 3-dim microstructures define accumulation areas

where bacteria spontaneously store colloidal particles

t=10s

Next, experiment (R. Di Leonardo et al. 2010):

Rotating micro saw-toothed disks in E. coli
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with bacterial bath without bacterial bath
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(N. Koumakis et al. 2013)
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Much room for statistical mechanics vt -

=p 8 Active (self-propelled) matter is kept in a non-equilibrium steady state
# The difference with other more classical driven systems is that the energy input is located on
internal units (motors) not at boundaries of the sample (sheared fluids, vibrated granular media)
# Interesting features: out-of-equilibrium phase transitions, self-organization, collective motion,

unusual mechanical properties, very large fluctuations...

# Which thermodynamic concepts can be applied to active matter?

# Can we “stand on the shoulders™ of giants who developed glassy physics?

s In passive glassy systems effective temperature T__is an interesting concept...
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@ Many-body dynamics very complicated, but at thermodynamic equilibrium...
@ We can forget about dynamics and choose a statistical description in terms of T, S, etc...

@ But: thermodynamics still contains information on dynamics

s Energy gained through fluctuations

. # Energy lost through dissipation (viscous drag)
brownian

motion € friction coefficient
£= ky T D diffusion coefficient
mD

T temperature
At equilibrium response & correlation are not independent: Fluctuation-Dissipation Theorem

E (C)»E.(C)=E,(C)-eB(C)

s ()= lim [ L] A()) = (), )2 € 1y (0)=C oy (1)

Integral form

===p Note that we can measure T from a parametric plot of y vs C ...
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# Question: Is it possible to measure a temperature in out-of-equlllbrlum condltlons?
s Answer: Yes, but we need a suitable thermometer... (. Kurchan 2005)

# An harmonic oscillator of frequency o coupled to an observable A “reads” a temperature:

@ equilibrium _2 (K) heat-bath temperature (equipartition)
kg
A :
9 out-of-equilibrium 7 (0, 4)=0 R|C(w, 4)] effective temperature of A at timescale ~ 1/®
S R(w, )

Example: supercooled liquids & glass formation 0-8} @) Fauilibre )
0.6~ o ~ 1/T -
(well-separated time-scales t <<t ) 0al i

x=—0 C(t)

= | | | I | |
1] : - 02f

A thermometer of frequencywreads o r .~ = >

] ~ L L | e L
. = osl N . b) Hors Equilibre]
1 l_tlongs N\ ]
Soe- T w>1/t, o N e ]
Tou T w~1/T * ] :
0.4 ] eﬁ slow 0.4j o ]ﬂ—q[i t COMrIi
02 02 .
ool NN NN NN NN with T@ﬂ r 557 oz 08 1

102 100 100 107 . 102103 10 108 C([)

Similar results observed in analytical models, simulations and (possibly) experiments...
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. Our scientific question: T__ for active matter? ~ ¢,
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# |n equilibrium, correlations and response to a perturbation are related by temperature (FDT)

# A suitable thermometer can be defined which measures the same temperature everywhere (tracer)

# In out-of-equilibrium, FDT holds in a generalized form (FDR)

s A well-tuned thermometer measures (at least) two temperatures: T for fast modes, T _for slow modes

# Theoretical, numerical and experimental evidences for external perturbations (T or P jumps, shear,...)

Our questions:

@ What happens in active self-propelled soft matter, with internal (non-conservative) stimuli?
@ Can the concept of effective temperature help?

@ Can effective temperatures be measured?

@ Can we establish a direct correlation between T _and the level of activity?
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A Molecular Dynamics simulation is a true, in-silico experiment:

# Choose your sample and level of description (modeling)
# No additional hypothesis, only physics rules

# |et the system evolve in controlled conditions (production)

# Calculate observables (analysis)

1. Put your components in a simulation box
2. Integrate numerically the coupled equations of motion
3. Produce realistic equilibrium configurations {r,v}

4. Use configurations to directly calculate observables

The tool: molecular dynam|cs S|mulat|ons

m; ‘_; :_gmi‘_;i+Fi+ﬁi

171

(i (¢)-7,(¢7))=2Em,Td(t—1")

/)

over-damped Langevin equation
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# |. Self-propelled particles

# 2. Active semi-flexible polymers
Fl-:Z szter+(Z thra)+f?4
J J

7,-]- =—V,U @two-body conservative (Lennard Jones)

forces

7M @ non-conservative stocastic motor forces ( NM , fM ) T,)
i

s During T steps independent forces are applied to N motorized (fixed, central) monomers

a The strength f  is the same for all, the direction n, is random and isotropic (no preferential flow)

the motor

a The subset of propelled monomers and n  changes at each power stroke

Let's start by checking if the effect of activity (f ) is non trivial (focus on polymers)...
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. passive beads

@ motorized beads

Not much can be said by
visual inspection...
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# First maximum in S(Q) shifts to higher Q, nearest neighbors distances decrease - crowding

@ Radius of gyration decreases, chains fold — folding

# Motor activity pushes closer the filaments which, at the same time, fold substantially

a Remember that we are working at constant external temperature (T, ) and density

=—p Effects on structure must couple to important effects on dynamics...
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Mean-squared displacement Self intermediate scattering function

A2(1)2%<Z |l‘i(t)—ri(0)|2> FS(Q: t):%<z eiQ'[rf(t)—r,-(O)]>

From these data we can extract:

s diffusion coefficient D(f)=lim A’(¢)/6t

{=> o0

s g-relaxation time F (O, t)cexp—(t/T, f)ﬁf
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# Collective dynamics of filaments gets faster under stronger f

# Folding of filaments seems to solve local topological constraints and decrease entanglement...
VR
D

]

# Similar dependence for active colloidal particles, with f replaced by Peclet number P,=

@ Activity alters structure and dynamics of the passive system, at fixed external conditions
@ What happens in active states to correlations and responses of well chosen observables?
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Effectlve temperatures I correlatlon response
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Calculations are very intensive...

_ 1
H=H,—€B XAB(t)_Teﬂ(t)[CAB(O)_CAB(t)]
< 1/NZ€

2Zecos (G-7.(1)]

Pe,)=1/2[d(e,+1)+5(€,~1)]
(L. Berthier and J.-L. Barrat 2002)

a Trick: A and B such that the good correlation function is F (Q,t) (calculated in equilibrium)

# Follow the linear response of A when B perturbed (several instances of the perturbation field)

a Measure T_ by calculating the long-time slope of the parametric plot:

IT

. increases continuously with activity f'!

This method is powerful but an implementation in actual experiments is dubious...better use tracers
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# A micrometric intruder (tracer) is immersed in the active system and couples to the polymer matrix

# [ts free or driven dynamics provide information about the polymer melt

a We follow the dynamics of the tracer both free and pulled by a small force h=h_

a We determine T via the Einstein relation between diffusion and mobility

free 7(t)—x§’(0)|2>
driven A _( T(¢)—x"(0)])
A2 (¢ A
x(> _, <t>
2 7 h
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Effective temperatures III: tracers again i
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qu"’. ; . .
| # Use of massive free tracers has also been considered
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. . -6 R | 1 R | 1 L
T Dby just computing D of a free tracer... 10 7 " o
T /T
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# All available data, both for self-propelled particles & motorized semi-flexible filaments

# Different methods used (FDR, massive and driven tracers), all give consistent results

a In active systems T__seems to have a thermodynamic meaning
a Different values of T _correspond to different structure and dynamics

a T  reflects the motor activity (similar to the Peclet number...)
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Conclusions & perspectives -

8 The out-of-equilibrium steady-state of active matter (internal non-conservative stimuli) can be

characterized by a simple parameter, the effective temperature T
a T  seems to depend continuously on the motor activity

s Different methods give compatible results for T

s Tracer particles seems to be very-well suited for T _measures in experiments

# Much to be investigated...

# We need to develop more realistic motors: from random to selective motors...

a Can we observe a Teff <T?

# What about mechanical properties (i.c., elastic constants)?
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Non-conservative forces and effective temperatures in active polymers
D. Loi, SM, and L. F. Cugliandolo
Soft Matter 7, 10193 (2011)

Effective temperature of active complex matter
D. Loi, SM, and L. F. Cugliandolo
Soft Matter 7, 3726 (2011)

Effective temperature of active matter _
D. Loi, SM, and L. F. Cugliandolo

Phys. Rev. E 77, 051111 (2008)

Thank You!
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