

Non-conservative forces & effective temperatures in active matter

Stefano MOSSA - CEA Grenoble, INAC/SPrAM

with Davide LOI & Leticia CUGLIANDOLO

Very interesting objects: the active matter

- Active matter absorbs energy from the environment or internal fuel tanks and use it to carry out motion
- Energy is partially transformed into **mechanical work** and partially dissipated in form of **heat**
- Units interact directly or through disturbances propagated in the medium
- **Conservative forces** and **thermal fluctuations** are complemented by **non-conservative forces**
- Many examples: highly deformable soft solids, viscoelastic fluids... (biological/non-biological origin)

Active matter can generate motion at mµ scale

• Asymmetric motors propelled by a bath of bacteria

First, simulation (L. Angelani et al. 2009):

net rotary counterclockwise motion of the gear

Next, experiment (R. Di Leonardo et al. 2010):

Rotating micro saw-toothed disks in E. coli

3-dim microstructures define accumulation areas where bacteria **spontaneously** store colloidal particles

with bacterial bath

(N. Koumakis et al. 2013)

without bacterial bath

Stefano Mossa – JPT CPTGA

ET CRYOGÉNIE

Much room for statistical mechanics

- Active (self-propelled) matter is kept in a non-equilibrium steady state
 - The difference with other more classical driven systems is that the energy input is located on internal units (motors) not at boundaries of the sample (sheared fluids, vibrated granular media)
 - Interesting features: out-of-equilibrium phase transitions, self-organization, collective motion, unusual mechanical properties, very large fluctuations...

- Which thermodynamic concepts can be applied to active matter?
- Can we "stand on the shoulders" of giants who developed glassy physics?
- In **passive** glassy systems effective temperature T_{eff} is an interesting concept...

Equilibrium fluctuation-dissipation theorem

- Many-body dynamics very complicated, but at thermodynamic equilibrium...
- We can forget about dynamics and choose a **statistical** description in terms of **T**, **S**, etc...
- But: thermodynamics still contains information on dynamics

- Energy gained through fluctuations
- Energy lost through dissipation (viscous drag)

ξ friction coefficientD diffusion coefficient

T temperature

At equilibrium response & correlation are not independent: Fluctuation-Dissipation Theorem

$$E_{o}(C) \rightarrow E_{\epsilon}(C) = E_{o}(C) - \epsilon B(C)$$

$$\chi_{AB}(t) = \lim_{\epsilon \to 0} \left(\frac{1}{\epsilon} \right) \left(\langle A(t) \rangle_{\epsilon} - \langle A \rangle_{o} \right) = \frac{1}{k_{B}T} \left[C_{AB}(0) - C_{AB}(t) \right]$$
Integration

 $\xi = \frac{k_B T}{m D}$

Integral form

Stefano Mossa – JPT CPTGA

Out-of-equilibrium Fluctuation-Dissipation relation

- Question: Is it possible to measure a temperature in out-of-equilibrium conditions?
- Answer: Yes, but we need a suitable thermometer... (J. Kurchan 2005)
- An harmonic oscillator of frequency ω coupled to an observable A "reads" a temperature:

• equilibrium
•
$$T = \frac{2}{k_B} \langle K \rangle$$

• out-of-equilibrium $T_{eff}(\omega, A) = \omega \frac{\Re [C(\omega, A)]}{\Im [R(\omega, A)]}$

heat-bath temperature (equipartition)

effective temperature of A at timescale $\sim 1/\omega$

Example: supercooled liquids & glass formation

A thermometer of frequency ω reads

$$T \qquad \omega \gg 1/\tau_{slow}$$

$$T_{eff} \qquad \omega \sim 1/\tau_{slow}$$

with $T_{eff} > T$

Similar results observed in analytical models, simulations and (possibly) experiments...

Our scientific question: T_{eff} for active matter?

- In equilibrium, correlations and response to a perturbation are related by temperature (FDT)
- A suitable **thermometer** can be defined which measures the same temperature everywhere (**tracer**)
- In out-of-equilibrium, FDT holds in a generalized form (FDR)
- A well-tuned thermometer measures (at least) two temperatures: T for **fast** modes, T_{eff} for **slow** modes
- Theoretical, numerical and experimental evidences for external perturbations (T or P jumps, shear,...)

Our questions:

- What happens in active self-propelled soft matter, with internal (non-conservative) stimuli?
- Can the concept of effective temperature help?
- Can effective temperatures be **measured**?
- Can we establish a **direct correlation** between T_{eff} and the level of **activity**?

The tool: molecular dynamics simulations

A Molecular Dynamics simulation is a true, **in-silico** experiment:

- Choose your sample and level of description (modeling)
- **No** additional hypothesis, **only physics rules**
- Let the system evolve in controlled conditions (**production**)
- Calculate observables (analysis)

- 1. Put your components in a simulation box
- 2. Integrate numerically the coupled equations of motion
- 3. Produce realistic equilibrium configurations {r,v}
- 4. Use configurations to directly calculate observables

$$\vec{F}_{i} = -\vec{\nabla} \sum_{j \neq i} V(r_{ij}) + \vec{F}_{i,NC}$$
$$m_{i} \dot{\vec{v}}_{i} = -\xi m_{i} \vec{v}_{i} + \vec{F}_{i} + \vec{\eta}_{i}$$
$$\langle \vec{\eta}_{i}(t) \cdot \vec{\eta}_{i}(t') \rangle = 2\xi m_{i} T \,\delta(t - t')$$
over-damped Langevin equation

Our toy models

1. Self-propelled particles

2. Active semi-flexible polymers

$$\vec{F}_{i} = \sum_{j} \vec{f}_{ij}^{inter} + \left(\sum_{j} \vec{f}_{ij}^{intra}\right) + \vec{f}_{i}^{M}$$

$$\vec{f}_{ij} = -\vec{\nabla}_i U \quad \text{• two-body conservative (Lennard Jones)}$$

$$\vec{f}_i^M \quad \text{• non-conservative stocastic motor forces (N_M, \mathbf{f}_M, \mathbf{n}_M, \mathbf{\tau}_M)}$$

During τ_M steps independent forces are applied to N_M motorized (fixed, central) monomers
 The strength f_M is the same for all, the direction n_M is random and isotropic (no preferential flow)
 The subset of propelled monomers and n_M changes at each power stroke

Let's start by checking if the effect of activity (\mathbf{f}_{M}) is non trivial (focus on polymers)...

System snapshots

Not much can be said by visual inspection...

Stefano Mossa – JPT CPTGA

Active polymers: structure

First maximum in S(Q) shifts to higher Q, nearest neighbors distances decrease - crowding

- Radius of gyration decreases, chains fold folding
- Motor activity pushes **closer** the filaments which, at the same time, fold substantially
- **a** Remember that we are working at **constant** external temperature (T_{bath}) and density

→ Effects on structure must couple to important effects on dynamics...

Active polymers: dynamics I

From these data we can extract:

diffusion coefficient

$$D(f) = \lim_{t \to \infty} \Delta_f^2(t) / 6t$$

• α -relaxation time $F_s(Q, t) \propto \exp(-(t/\tau_{\alpha f})^{\beta_f})$

Active polymers: dynamics II

- Collective dynamics of filaments gets faster under stronger f
- Folding of filaments seems to **solve** local topological constraints and decrease **entanglement**...
- Similar dependence for active colloidal particles, with **f** replaced by **Peclet number** $P_e = \frac{vR}{D_e}$
 - Activity alters structure and dynamics of the passive system, at fixed external conditions
 - What happens in active states to correlations and responses of well chosen observables?

Effective temperatures I: correlation-response

Calculations are very intensive...

$$H_{\epsilon} = H_{o} - \epsilon B \qquad \chi_{AB}(t) = \frac{1}{T_{eff}(t)} [C_{AB}(0) - C_{AB}(t)]$$
$$A(t) = 1/N \sum_{i=1}^{N} \epsilon_{i} e^{i\vec{q}\cdot\vec{r}_{i}(t)}$$
$$B(t) = 2 \sum_{i=1}^{N} \epsilon_{i} \cos[\vec{q}\cdot\vec{r}_{i}(t)]$$
$$P(\epsilon_{i}) = 1/2 [\delta(\epsilon_{i}+1) + \delta(\epsilon_{i}-1)]$$

(L. Berthier and J.-L. Barrat 2002)

Trick: A and B such that the good correlation function is $F_s(Q,t)$ (calculated in equilibrium)

- Follow the linear response of A when B perturbed (several instances of the perturbation field)
- Measure T_{eff} by calculating the long-time slope of the parametric plot:
- **T**_{eff} increases continuously with activity f !

This method is powerful but an implementation in actual experiments is dubious...better use tracers

Effective temperatures II: tracers

- A micrometric intruder (tracer) is immersed in the active system and couples to the polymer matrix
- Its free or driven dynamics provide information about the polymer melt
- We follow the dynamics of the tracer both free and pulled by a small force $h=h_{t}$
- **\blacksquare** We determine T_{eff} via the Einstein relation between **diffusion** and **mobility**

free
$$\Delta_x^2(t) = \frac{1}{N_{tr}} \langle \sum_{i}^{N_{tr}} |x_i^{tr}(t) - x_i^{tr}(0)|^2 \rangle$$

driven
$$\Delta_x(t) = \frac{1}{N_{tr}} \langle \sum_{i}^{N_{tr}} |x_i^{tr}(t) - x_i^{tr}(0)| \rangle$$
$$\frac{\Delta_x^2(t)}{2} = T_{eff} \frac{\Delta_x(t)}{h}$$

Effective temperatures III: tracers again

a Consider **different T** and ρ and calculate D and T_{eff}

All data can be collapsed on a **master curve**

$$D\rho/T \propto (T_{eff}/T)^{\alpha}, \alpha \simeq 1$$

Once the master curve is known we can predict
 T_{eff} by just computing D of a free tracer...

- Again, T_{eff} is controlled by motor activity
- Use of massive free tracers has also been considered

ET CRYOGÉNIE

Effective temperature(s) vs motor activity

- All available data, both for self-propelled particles & motorized semi-flexible filaments
- Different methods used (FDR, massive and driven tracers), all give consistent results
- **a** In active systems T_{eff} seems to have a thermodynamic **meaning**
- Different values of T_{eff} correspond to different structure and dynamics
- T_{eff} reflects the motor activity (similar to the Peclet number...)

Conclusions & perspectives

- The out-of-equilibrium steady-state of active matter (internal non-conservative stimuli) can be characterized by a simple parameter, the effective temperature T_{eff}
- \bullet T_{eff} seems to depend continuously on the **motor activity**
- **Different methods** give compatible results for T_{eff}
- **Tracer particles** seems to be very-well suited for T_{eff} measures in **experiments**
- Much to be investigated...
 - We need to develop more realistic motors: from random to selective motors...
 - Can we observe a $T_{eff} < T$?
 - What about **mechanical properties** (i.e., elastic constants)?
 - 🦉 ...

Looking for more information?

Non-conservative forces and effective temperatures in active polymers

D. Loi, SM, and L. F. Cugliandolo Soft Matter 7, 10193 (2011)

Effective temperature of active complex matter

D. Loi, SM, and L. F. Cugliandolo Soft Matter 7, 3726 (2011)

Effective temperature of active matter

D. Loi, SM, and L. F. Cugliandolo Phys. Rev. E 77, 051111 (2008) http://stefano-mossa.weebly.com

Stefano Mossa – JPT CPTGA

