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Protoplanetary discs

Size: 1011-1015 cm (0.1-100 AU)
Temperature:10-103 K
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An accretion problem...

Gas can fall on the central object only if it looses 
angular momentum.
One needs a way to transport angular momentum 
outward to have accretion: 
«angular momentum transport problem»

First idea: molecular viscosity
Theoretical accretion rate due to viscous 
transport is very small compared to 
observational constrains

Other ways to extract angular momentum in 
discs?
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Angular momentum transport processes
I- turbulent transport

Transport angular momentum in the bulk of the disc
Suggested by Shakura & Sunyaev (1973)
Turbulence leads to enhanced transport («mixing length theory»)
Turbulent viscosity
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Angular momentum

10�3 < ↵ < 10�2

2H

⌫t = ↵csH

«turbulent transport» «sound speed» «1/2 disc thickness»



Angular momentum transport processes
II- disc wind

Angular momentum extracted from the disc by a magnetic wind
[Blandford & Payne 1982, MNRAS, 199, 883]

Magnetic field exerts a torque on the disc surface which generates accretion 
(not described by α-disc!)
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Angular momentum



Local instabilities:
Magnetorotational instability (MRI): shear driven instability but requires an ionised 
plasma (Velikhov 1959, Chandrasekhar 1960, Balbus & Hawley 1991)

Subcritical shear instability: probably not efficient enough, if exists (Lesur & 
Longaretti 2005, Ji+ 2006)

Baroclinic instabilities: Transport due to waves. Driven by the disk radial entropy 
profile

Gravitational instabilities: only for massive & cold enough disk

Rossby wave instability: requires a local maximum of vortensity (Lovelace et. al 
1999)

Vertical convection: Requires a heat source in the midplane (Cabot 1996, Lesur & 
Ogilvie 2010)

Global instabilities:
Papaloizou & Pringle instability: density wave reflection on the inner edge 
(Papaloizou & Pringle 1985)

Accretion-ejection instability: spiral Alfvén wave reflection on the inner edge (Tagger 
& Pellat 1999)
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Origin of turbulence in discs
Instabilities



Ideal MHD equations
Derivation

Magnetic fields create a force on the flow: the Lorentz force

The evolution of the field is dictated by Maxwell-Faraday equation

To close the system, we introduce Ohm’s law in the co-moving frame for a 
perfect conductor

So the electric field in the Laboratory frame is:

7

@t⇢+r · ⇢u = 0,

@t⇢u+r · ⇢uu = �rP + J ⇥B + ⇢g,
Lorentz force

@tB = �r⇥E

Ecm = ⌘J = 0 U = RI R = 0( with ) 

E = �u⇥B +Ecm



Ideal MHD equations
Consequences

Set of ideal MHD equations

The Lorentz force can be decomposed into

Alfvén waves are magnetised waves driven by magnetic tension
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@t⇢+r · ⇢u = 0,

@t⇢u+r · ⇢uu = �rP + J ⇥B + ⇢g,

@tB = r⇥ (u⇥B)

J ⇥B = B ·rB �rB2

2
«magnetic
tension»

«magnetic
pressure»

VA =
B
p
⇢



Field line

A
B

A

B

[Balbus, & Hawley (1991)]
[Balbus (2003)]
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Ideal MHD instability, modified (possibly 
suppressed) by nonideal effects

Origin of turbulence in discs
The Magnetorotational instability (MRI)



Stability analysis
Hydrodynamic case
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Stability analysis
Magnetised case

⇠

Resulting equation of motion for a fluid particle:

ẍ� 2⌦ẏ = �
⇣

d⌦2

d lnR
+ (k · vA)2

⌘
x

ÿ + 2⌦ẋ = �(k · vA)2y

Induction equation for a small displacement
and a spatial dependence                     :/ exp(ikz)

�B = i(k ·Bz0)⇠

The magnetic tension force is then

Bz0 ·rB

⇢
=

i(k ·Bz0)

⇢
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Stability analysis
Dispersion relation

!4 � !2[2 + 2(k · vA)2] + (k · vA)2
"
(k · vA)2 +

d⌦2

d lnR

#
= 0

[Balbus & Hawley 1991]

Introduce:
Dispersion relation

y = y0 exp(i!t)

x = x0 exp(i!t)

The MRI is a «weak field» instability
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[Flock+ 2011]

Global simulations in the ideal MHD limit are consistent with observational constraints

[Hawley+ (1995) ; Fromang & Nelson (2006) ; Sorathia+ (2012)]

Nonlinear evolution: ideal MHD case
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Ionisation sources in protoplanetary discs
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Protoplanetary disc plasmas are dominated by neutrals



Dead zone in protoplanetary discs

How large is the dead zone?

What’s happening inside the dead zone?
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Ions and neutrals dynamics

Equation of motion for the neutrals:

With a drag force:

For ions (assuming large collision frequency):

Resulting equation of motion & drift speed

⇢
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Electrons dynamics

Induction equation:
@B
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= r⇥
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ions and neutrals, respectively (for a derivation see, e.g., Balbus 2011). The terms on the right-
hand-side describe magnetic induction (the frozen-in field behavior of ideal MHD) and the three
nonideal effects, Ohmic diffusion (denoted as O), the Hall effect (H), and ambipolar diffusion
(A). Physically, ambipolar diffusion is dominant when the field is well-coupled to the ions and
electrons, such that the field drifts with the charged species relative to the neutral component.
Ohmic diffusion dominates when the conductivity is so low that the field is imperfectly coupled
to both the electrons and the ions. Finally, the Hall effect is most important in an intermediate
regime where the field is well coupled to the electrons but not to the ions.

Determining the absolute importance of the nonideal terms (i.e., their ratios to the inductive
term) requires solving for the ionization state of the disk. As we have already observed, this is
difficult everywhere except in the very innermost regions, interior to about 0.1 AU, where thermal
ionization dominates. It is much easier to assess the relative magnitude of the nonideal terms, which
depend only upon the temperature, T, and total number density, n. Balbus & Terquem (2001)
estimate these ratios by assuming that electrons and singly-ionized ions are the charge carriers,
that the typical fluid velocities are ∼vA, the Alfvén speed, and that typical gradients are ∼h−1.
They obtain,

O
H

=
(

n
8 × 1017 cm−3

)1/2 (
vA

c s

)−1

, (26)

A
H

=
(

n
9 × 1012 cm−3

)−1/2 (
T

103 K

)1/2 (
vA

c s

)
. (27)

Using these expressions, we show in Figure 5 the relative importance of the three nonideal effects
as a function of density and temperature (after Kunz & Balbus 2004). Over-plotted on the figure
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2) Hall
3) Ohmic
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Figure 5
The relative importance of nonideal magnetohydrodynamic terms is shown in the (ρ, T ) plane (Balbus &
Terquem 2001, Kunz & Balbus 2004), assuming a magnetic field strength such that vA/c s = 0.1. Also
plotted are very approximate tracks showing the radial variation of physical conditions at the midplane, and
near the surface, of protoplanetary disks. The midplane conditions are estimated for a disk around a
solar-mass star with " = 103(r/1 AU)−1 g cm−2 and (h/r) = 0.04. The surface conditions are estimated
from the density at z = ±4h (using a Gaussian density profile), assuming that the temperature is the effective
temperature for a steady-state disk accreting at Ṁ = 10−7 M⊙ year−1.
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Non-ideal protoplanetary discs

Hall effect dominates in most of the disc midplane

[Armitage 2011]

Ambipolar diffusion dominates in the upper layer

NB: strongly depends on 
grain size and metallically



The shearing box model
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Hall-MRI: turbulent viscosity
Varying field strength and Ohmic resistivity

Transport is controlled by 
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Hall-dominated MRI turbulence 11
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Figure 11. Mean turbulent stress versus Hall effect for β = 1000, 3200,
and 10000, and Λ−1

η = 1, 4, and 50. The turbulent stress decreases sharply
when ℓH ! 0.2, separating the low-transport state from the classical high-
transport state.

does suggest an explanation for this negative result, a more system-
atic exploration of these cases is needed to verify our conclusions.
This is deferred to a future publication.

4 MEAN-FIELD THEORY OF ZONAL FIELDS AND
FLOWS

In this Section, we formulate a mean-field theory that explains the
observed transport bifurcation from a high- to a low-transport state
and the appearance of zonal magnetic fields and flows. We start
by separating the velocity and magnetic fields into fluctuating and
non-fluctuating parts:

v = v0 + ⟨v⟩+ δv and B = ⟨B⟩+ δB.

Upon averaging over azimuth and height, equations (3) and (4) be-
come ∂x⟨vx⟩ = 0 and ∂x⟨Bx⟩ = 0, respectively; it follows from
equation (2) that ⟨Bx⟩ = 0 if it is so initially. For clarity of presen-
tation, we further assume that ⟨vx⟩ = 0. Not only is this assump-
tion supported by our numerical results, but it also allows us to
cancel global epicyclic oscillations nonessential for understanding
the emergence of zonal fields and flows.

Introducing the Reynolds stress,

Rij ≡ ρδviδvj ,

and the Faraday tensor,

Fij ≡ δviδBj − δvjδBi,

the pertinent mean-field equations are the z-component of the av-
eraged induction equation (2),

∂⟨Bz⟩
∂t

= −∂⟨Fxz⟩
∂x

− c
ene

∂2⟨Mxy⟩
∂x2

+ η
∂2⟨Bz⟩
∂x2

, (22)

and the z-component of the averaged vorticity equation (5),

∂⟨ωz⟩
∂t

= −1
ρ
∂2⟨Rxy⟩
∂x2

+
1
ρ
∂2⟨Mxy⟩

∂x2
+ ν

∂2⟨ωz⟩
∂x2

. (23)

The mean vorticity,

⟨ωz⟩ =
∂⟨vy⟩
∂x

+ 2A,

in includes a contribution from the background shear (= 2A, which
is negative in Keplerian discs). Note that the averaged Maxwell
stress ⟨Mij⟩ comprises products of only the fluctuating magnetic
fields.

In order to solve equations (22) and (23), we must construct
models for ⟨Fij⟩, ⟨Rij⟩, and ⟨Mij⟩. The Faraday tensor has been
shown to be accurately modeled by a turbulent resistivity with coef-
ficient ηt (Lesur & Longaretti 2009), and we take this to be the case
in what follows. We follow a similar approach for the Reynolds
stress by modeling it as a turbulent viscosity with coefficient νt.
Adopting these simplifications, our mean-field equations become

∂⟨Bz⟩
∂t

≃ (η + ηt)
∂2⟨Bz⟩
∂x2

− c
ene

∂2M
∂x2

, (24)

∂⟨ωz⟩
∂t

≃ (ν + νt)
∂2⟨ωz⟩
∂x2

+
1
ρ
∂2M
∂x2

. (25)

We consider two models for the Maxwell stress, each of which will
produce zonal behaviour very similar to that seen in our nonlinear
numerical simulations.

4.1 Case I: ⟨Mxy⟩ = M(⟨Bz⟩)

As a first approach, we take the xy-component of the Maxwell
stress to be a function only of the local vertical magnetic flux,

⟨Mxy⟩ ≡ M(⟨Bz⟩),

and we concentrate on the evolutionary evolution for the mean ver-
tical magnetic field (eq. 24). We suppose that there is some ⟨B0

z⟩
that satisfies this equation in steady-state (e.g. ⟨B0

z⟩ constant) and
we examine small deviations ⟨B1

z⟩ about that state. Linearising
equation (24), we find that such deviations satisfy

∂⟨B1
z⟩

∂t
≃

(

η + ηt −
c

ene

dM
d⟨Bz⟩

∣

∣

∣

∣

⟨B0
z
⟩

)

∂2⟨B1
z⟩

∂x2
. (26)

This equation has a simple interpretation. While resistivity acts dif-
fusively on ⟨B1

z⟩, the Hall term may be diffusive or anti-diffusive
depending upon the local gradient of the Maxwell stress.

Fortunately, even without a specific model for M , progress
can be made. For sufficiently large values of ⟨Bz⟩, we expect the
MRI to be stable and M → 0. We also expect M → 0 for suf-
ficiently small values of ⟨Bz⟩, since unstable modes exist only
at small wavelengths where Ohmic dissipation becomes impor-
tant and suppresses turbulent transport. In between these extremes,
we know that the Maxwell stress is negative since the MRI trans-
ports angular momentum outwards. Therefore, d2M/d⟨Bz⟩2 < 0,
and so there must be a value of ⟨B0

z⟩ = Bz,crit above which
dM/d⟨Bz⟩ > 0 and below which dM/d⟨Bz⟩ < 0.

First, let us consider ⟨B0
z⟩ < Bz,crit. Then both the Ohmic

and Hall contributions to equation (26) are positive and any devi-
ations from steady-state diffusively decay. Now let us consider the
opposite case, ⟨B0

z⟩ > Bz,crit. Then the Ohmic and Hall contribu-
tions to equation (26) have opposite signs and so the Hall effect acts
anti-diffusively. If the Hall effect can overcome diffusive processes,
any increment in the local magnetic flux continues to grow and con-
tract until ⟨Bz⟩ becomes large enough forM → 0. By flux conser-
vation, there must be accompanying patches of decreased magnetic
flux, which we anticipate having low levels of turbulent transport
as well. We associate this scenario with the transition to the LTS.

We now make these ideas concrete by specifying a simple
model for the Maxwell stress,

c⃝ 2013 RAS, MNRAS 000, 1–18
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Hall-MRI animation: Bz

MRI+Ohmic+Hall
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MRI+Ohmic resistivity



Zonal field structures in Hall-dominated discs

Self Organisation!

Hall-dominated MRI turbulence 9
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Figure 6. Space-time diagram of the vertically and azimuthally averaged
vertical component of the magnetic field ⟨Bz⟩ and the vorticity ⟨ωz⟩ in run
ZB1H1. The appearance of vorticity bands, anti-correlated with the zonal-
field structures, is observed.
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Figure 7. Space-time diagram of the vertically and azimuthally averaged
vertical component of the magnetic field ⟨Bz⟩ in run ZB1H1L. Two stable
zonal-field regions are produced.

suggesting that the MRI is magnetically quenched in that region.
As we will see in Section 4, the presence of a region of magneti-
cally quenched MRI is of particular importance if one is to explain
the presence of zonal-field structures.

In order to verify that the formation of a zonal field is not de-
pendent upon the initial conditions of the simulation, we have also
run a purely resistive (Λ−1

H = 0) MRI simulation with the same pa-
rameters as run ZB1H1. This simulation was run up until t = 630,
at which point the Hall effect was switched on with Λ−1

H = 17.4.
Within ∼4 orbits, the fully developed 3D turbulence disappeared
and was replaced by a large-scale zonal field with an averaged tur-
bulent transport α ∼ 10−4. This demonstrates that the LTS, and
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Figure 8. (y, z, t) averages of the turbulent stress (top) and magnetic field
(bottom) for run ZB1H1. A clear correlation between the Maxwell stress
and the mean vertical magnetic field is exhibited, a feature which is re-
sponsible for the formation and sustainment of a zonal magnetic field (see
Section 3.2.2).

the zonal field associated with it, are robust nonlinear features of
the Hall-dominated MRI.

3.2.3 A criterion for the low-transport state

We have shown that an LTS exhibiting axisymmetric (‘zonal’)
fields emerges in several simulations of the Hall-dominated MRI.
To make any prediction about the saturation level, one must know
when the system will choose the LTS instead of the ‘classical’ tur-
bulent MRI state (HTS). To this end, we have systematically ex-
plored the parameter space (Λη , Λν , β). In this parameter space,
we include a regime which is stable without the Hall effect (runs
ZB10XX). We present in Figure 9 the growth rates of the most un-
stable Hall-MRI modes present in some representative runs from
ZB3XX and ZB10XX. As expected, all the runs but ZB10I1 are
linearly unstable with growth rates γ > 0.1. Note that the vertical
wavelength of the most unstable mode increases with ℓH (§ 2.6).

In Figure 10 we summarise all our results on a single plot
exhibiting the mean turbulent stress α as a function of ℓH. Despite
the differing initial β, viscosities, and resistivities, all of the values
of α tend to collapse onto a single curve dependent primarily upon
ℓH. We find that the system stays in the HTS up to ℓH ≃ 0.2 for
all our simulations, independent of the mean field strength and of
the resistivity; in this case the typical turbulent stress α ∼ 10−2–
10−1. Beyond ℓH ∼ 0.2, the system transitions rapidly to an LTS

c⃝ 2013 RAS, MNRAS 000, 1–17
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suggesting that the MRI is magnetically quenched in that region.
As we will see in Section 4, the presence of a region of magneti-
cally quenched MRI is of particular importance if one is to explain
the presence of zonal-field structures.

In order to verify that the formation of a zonal field is not de-
pendent upon the initial conditions of the simulation, we have also
run a purely resistive (Λ−1

H = 0) MRI simulation with the same pa-
rameters as run ZB1H1. This simulation was run up until t = 630,
at which point the Hall effect was switched on with Λ−1

H = 17.4.
Within ∼4 orbits, the fully developed 3D turbulence disappeared
and was replaced by a large-scale zonal field with an averaged tur-
bulent transport α ∼ 10−4. This demonstrates that the LTS, and
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the zonal field associated with it, are robust nonlinear features of
the Hall-dominated MRI.

3.2.3 A criterion for the low-transport state

We have shown that an LTS exhibiting axisymmetric (‘zonal’)
fields emerges in several simulations of the Hall-dominated MRI.
To make any prediction about the saturation level, one must know
when the system will choose the LTS instead of the ‘classical’ tur-
bulent MRI state (HTS). To this end, we have systematically ex-
plored the parameter space (Λη , Λν , β). In this parameter space,
we include a regime which is stable without the Hall effect (runs
ZB10XX). We present in Figure 9 the growth rates of the most un-
stable Hall-MRI modes present in some representative runs from
ZB3XX and ZB10XX. As expected, all the runs but ZB10I1 are
linearly unstable with growth rates γ > 0.1. Note that the vertical
wavelength of the most unstable mode increases with ℓH (§ 2.6).

In Figure 10 we summarise all our results on a single plot
exhibiting the mean turbulent stress α as a function of ℓH. Despite
the differing initial β, viscosities, and resistivities, all of the values
of α tend to collapse onto a single curve dependent primarily upon
ℓH. We find that the system stays in the HTS up to ℓH ≃ 0.2 for
all our simulations, independent of the mean field strength and of
the resistivity; in this case the typical turbulent stress α ∼ 10−2–
10−1. Beyond ℓH ∼ 0.2, the system transitions rapidly to an LTS
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Conservation laws in Hall-MHD

Induction Vorticity
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Figure 7. Space-time diagram of the vertically and azimuthally averaged
vertical component of the magnetic field ⟨Bz⟩ and the vorticity ⟨ωz⟩ in run
ZB1H1. The appearance of vorticity bands, anti-correlated with the zonal-
field structures, is observed.

outcome of the saturated state: a similar LTS is observed, demon-
strating that our simulations have converged.4

We quantify the presence of a zonal field by defining an aver-
aging procedure,

⟨·⟩ ≡ 1
LyLz

∫∫

dy dz,

and computing the evolution of the vertically and azimuthally av-
eraged vertical component of the magnetic field ⟨Bz⟩. In the top
panel of Figure 7 we present the resulting space-time diagram.
This diagram clearly exhibits a strong zonal field with a typical
radial thickness ∼1. Outside of this zonal-field region, the aver-
aged field is weak with |⟨Bz⟩| ! 10−2. A closer inspection shows
that the system initially exhibits two zonal-field regions, centred
at x ≃ 0.3 and x ≃ 1.8. At t ≃ 160 a rapid reorganisation oc-
curs, and these two regions merge to produce one zonal field that
survives for more than 1000Ω−1. While zonal fields are generally
very long-lived structures in isolation, this demonstrates that they
may become strongly unstable when another is nearby.

It was shown in Section 2.2 that, in the presence of the Hall
effect, a new conserved quantity replaces the magnetic flux: the
canonical vorticity. Since canonical vorticity is conserved without
dissipative effects (e.g. viscosity, resistivity), we expect the for-
mation of axisymmetric bands of vertical vorticity that are anti-
correlated with the zonal fields. To check for this effect, we have

4 Due to the extreme cost of such a high-resolution simulation, this partic-
ular run was stopped at t = 160; it is therefore not listed in Table 1.
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Figure 8. Space-time diagram of the vertically and azimuthally averaged
vertical component of the magnetic field ⟨Bz⟩ in run ZB1H1L. Two stable
zonal-field regions are produced.

computed the vertically and azimuthally averaged vertical compo-
nent of the flow vorticity ⟨ωz⟩ = −∂x⟨vy⟩ + 2A in run ZB1H1.
The resulting space-time diagram is shown in Figure 7b, and clearly
demonstrates the formation of a zonal-vorticity region akin to a
zonal flow. In accordance with expectations from conservation of
canonical vorticity, we also find that the flow vorticity is anti-
correlated with the vertical magnetic field. However, the vorticity
and magnetic field do not have exactly the same shape—the mean
vorticity appears to be concentrated around the edges of the zonal-
field region. This difference is due to the explicit dissipation, and
in particular to the fact that Pm ≪ 1: magnetic-field lines dif-
fuse quite rapidly through the bulk ion/neutral fluid, whereas vor-
tex lines does not. Therefore, conservation of canonical vorticity is
only approximately verified in our simulations, owing to the pres-
ence of non-negligible dissipative terms.

Since our box size is limited, one may suspect that the pres-
ence of only one zonal-field region in run ZB1H1 is an artifact of
the boundary conditions. To check this, we have performed a sim-
ulation in a wider box (8× 8× 1) with the same physical parame-
ters as run ZB1H1. The space-time diagram of this simulation (run
ZB1H1L) is presented in Figure 8. We observe the formation of
two zonal-field regions of size≈1.5, which survive for the remain-
der of the simulation. This indicates that zonal-field regions have
an intrinsic width independent of the radial and azimuthal box size
(provided the latter is significantly larger than H).

In order to verify that the formation of a zonal field is not de-
pendent upon the initial conditions of the simulation, we have also
run a purely resistive (Λ−1

H = 0) MRI simulation with the same pa-
rameters as run ZB1H1. This simulation was run up until t = 630,
at which point the Hall effect was switched on with Λ−1

H = 17.4.
Within ∼4 orbits, the fully developed 3D turbulence disappeared
and was replaced by a large-scale zonal field with an averaged tur-
bulent transport α ∼ 10−4. This demonstrates that the LTS, and
the zonal field associated with it, are robust nonlinear features of
the Hall-dominated MRI.

To understand how this zonal-field structure is sustained, we
return to the argument given in Section 2.3. In particular, it was
shown that the Maxwell stress directly enters into the induction
equation through the Hall effect. We therefore compute the mean
stress and magnetic field in run ZB1H1, averaging these quantities
in y, z, and time (from t = 500 to t = 600). The resulting pro-
files are presented in Figure 9, and exhibit a very clear correlation
between the averaged Maxwell stress ⟨Mxy⟩ and the magnetic-
field profile ⟨Bz⟩. In particular, there are inflection points in the
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outcome of the saturated state: a similar LTS is observed, demon-
strating that our simulations have converged.4

We quantify the presence of a zonal field by defining an aver-
aging procedure,

⟨·⟩ ≡ 1
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∫∫

dy dz,

and computing the evolution of the vertically and azimuthally av-
eraged vertical component of the magnetic field ⟨Bz⟩. In the top
panel of Figure 7 we present the resulting space-time diagram.
This diagram clearly exhibits a strong zonal field with a typical
radial thickness ∼1. Outside of this zonal-field region, the aver-
aged field is weak with |⟨Bz⟩| ! 10−2. A closer inspection shows
that the system initially exhibits two zonal-field regions, centred
at x ≃ 0.3 and x ≃ 1.8. At t ≃ 160 a rapid reorganisation oc-
curs, and these two regions merge to produce one zonal field that
survives for more than 1000Ω−1. While zonal fields are generally
very long-lived structures in isolation, this demonstrates that they
may become strongly unstable when another is nearby.

It was shown in Section 2.2 that, in the presence of the Hall
effect, a new conserved quantity replaces the magnetic flux: the
canonical vorticity. Since canonical vorticity is conserved without
dissipative effects (e.g. viscosity, resistivity), we expect the for-
mation of axisymmetric bands of vertical vorticity that are anti-
correlated with the zonal fields. To check for this effect, we have

4 Due to the extreme cost of such a high-resolution simulation, this partic-
ular run was stopped at t = 160; it is therefore not listed in Table 1.
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nent of the flow vorticity ⟨ωz⟩ = −∂x⟨vy⟩ + 2A in run ZB1H1.
The resulting space-time diagram is shown in Figure 7b, and clearly
demonstrates the formation of a zonal-vorticity region akin to a
zonal flow. In accordance with expectations from conservation of
canonical vorticity, we also find that the flow vorticity is anti-
correlated with the vertical magnetic field. However, the vorticity
and magnetic field do not have exactly the same shape—the mean
vorticity appears to be concentrated around the edges of the zonal-
field region. This difference is due to the explicit dissipation, and
in particular to the fact that Pm ≪ 1: magnetic-field lines dif-
fuse quite rapidly through the bulk ion/neutral fluid, whereas vor-
tex lines does not. Therefore, conservation of canonical vorticity is
only approximately verified in our simulations, owing to the pres-
ence of non-negligible dissipative terms.

Since our box size is limited, one may suspect that the pres-
ence of only one zonal-field region in run ZB1H1 is an artifact of
the boundary conditions. To check this, we have performed a sim-
ulation in a wider box (8× 8× 1) with the same physical parame-
ters as run ZB1H1. The space-time diagram of this simulation (run
ZB1H1L) is presented in Figure 8. We observe the formation of
two zonal-field regions of size≈1.5, which survive for the remain-
der of the simulation. This indicates that zonal-field regions have
an intrinsic width independent of the radial and azimuthal box size
(provided the latter is significantly larger than H).

In order to verify that the formation of a zonal field is not de-
pendent upon the initial conditions of the simulation, we have also
run a purely resistive (Λ−1

H = 0) MRI simulation with the same pa-
rameters as run ZB1H1. This simulation was run up until t = 630,
at which point the Hall effect was switched on with Λ−1

H = 17.4.
Within ∼4 orbits, the fully developed 3D turbulence disappeared
and was replaced by a large-scale zonal field with an averaged tur-
bulent transport α ∼ 10−4. This demonstrates that the LTS, and
the zonal field associated with it, are robust nonlinear features of
the Hall-dominated MRI.

To understand how this zonal-field structure is sustained, we
return to the argument given in Section 2.3. In particular, it was
shown that the Maxwell stress directly enters into the induction
equation through the Hall effect. We therefore compute the mean
stress and magnetic field in run ZB1H1, averaging these quantities
in y, z, and time (from t = 500 to t = 600). The resulting pro-
files are presented in Figure 9, and exhibit a very clear correlation
between the averaged Maxwell stress ⟨Mxy⟩ and the magnetic-
field profile ⟨Bz⟩. In particular, there are inflection points in the
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 long-lived zonal flows are associated to Hall-MRI
Good for planet formation?



The Cherry on the cake
Une nouvelle loi de conservation!
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Conclusions

Non ideal MHD effects are essential in PP discs
Hall MRI reorganises the magnetic field creating large scale structures
Potentially a strong impact on planet formation (dust agregation)
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Magnetically dead zone
Hall-driven self organisation? 
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