MHD turbulence and planet formation

Geoffroy Lesur (IPAG, Grenoble, France)

Protoplanetary discs

Credit: C. Burrows and J. Krist (STScl), K. Stapelfeldt (JPL) and NASA

Artist view

- Size: 10¹¹-10¹⁵ cm (0.1-100 AU)
- Temperature:10-10³ K

An accretion problem...

- Gas can fall on the central object only if it looses angular momentum.
- One needs a way to transport angular momentum outward to have accretion: «angular momentum transport problem»

First idea: molecular viscosity

 Theoretical accretion rate due to viscous transport is very small compared to observational constrains

Other ways to extract angular momentum in discs?

Credit: C. Burrows and J. Krist (STScl), K. Stapelfeldt (JPL) and NASA

Angular momentum transport processes I- turbulent transport

- Transport angular momentum in the bulk of the disc
- Suggested by Shakura & Sunyaev (1973)
- Turbulence leads to enhanced transport («mixing length theory»)
- Turbulent viscosity

Angular momentum transport processes II- disc wind

- Angular momentum extracted from the disc by a magnetic wind [Blandford & Payne 1982, MNRAS, 199, 883]
- Magnetic field exerts a torque on the disc surface which generates accretion (not described by α-disc!)

Origin of turbulence in discs Instabilities

Local instabilities:

- Magnetorotational instability (MRI): shear driven instability but requires an ionised plasma (Velikhov 1959, Chandrasekhar 1960, Balbus & Hawley 1991)
- Subcritical shear instability: probably not efficient enough, if exists (Lesur & Longaretti 2005, Ji+ 2006)
- Baroclinic instabilities: Transport due to waves. Driven by the disk radial entropy profile
- Gravitational instabilities: only for massive & cold enough disk
- Rossby wave instability: requires a local maximum of vortensity (Lovelace et. al 1999)
- Vertical convection: Requires a heat source in the midplane (Cabot 1996, Lesur & Ogilvie 2010)

Global instabilities:

- Papaloizou & Pringle instability: density wave reflection on the inner edge (Papaloizou & Pringle 1985)
- Accretion-ejection instability: spiral Alfvén wave reflection on the inner edge (Tagger & Pellat 1999)

Ideal MHD equations Derivation

Magnetic fields create a force on the flow: the Lorentz force

$$\partial_t \rho + \nabla \cdot \rho u = 0,$$

 $\partial_t \rho u + \nabla \cdot \rho u u = -\nabla P + J \times B + \rho g,$
Lorentz force

The evolution of the field is dictated by Maxwell-Faraday equation

$$\partial_t \boldsymbol{B} = -\boldsymbol{\nabla} \times \boldsymbol{E}$$

 To close the system, we introduce Ohm's law in the co-moving frame for a perfect conductor

$$\boldsymbol{E}_{\mathrm{cm}} = \eta \boldsymbol{J} = 0$$
 ($U = RI$ with $R = 0$)

So the electric field in the Laboratory frame is:

 $E=-u imes B+E_{
m cm}$

Ideal MHD equations Consequences

Set of ideal MHD equations

$$\partial_t \rho + \boldsymbol{\nabla} \cdot \rho \boldsymbol{u} = 0,$$

 $\partial_t \rho \boldsymbol{u} + \boldsymbol{\nabla} \cdot \rho \boldsymbol{u} \boldsymbol{u} = -\boldsymbol{\nabla} P + \boldsymbol{J} \times \boldsymbol{B} + \rho \boldsymbol{g},$
 $\partial_t \boldsymbol{B} = \boldsymbol{\nabla} \times (\boldsymbol{u} \times \boldsymbol{B})$

The Lorentz force can be decomposed into

$$J \times B = B \cdot \nabla B - \nabla \frac{B^2}{2}$$

«magnetic «magnetic tension» pressure»

Alfvén waves are magnetised waves driven by magnetic tension

$$V_A = \frac{B}{\sqrt{\rho}}$$

Origin of turbulence in discs The Magnetorotational instability (MRI)

Stability analysis Hydrodynamic case

Resulting equation of motion for a fluid particle:

$$\ddot{x} - 2\Omega \dot{y} = -\frac{d\Omega^2}{d\ln R}x$$
$$\ddot{y} + 2\Omega \dot{x} = 0$$

Epicyclic oscillations at frequency $\kappa = \left(4\Omega^2 + \frac{d\Omega^2}{d\ln R}\right)^{1/2}$

Stability analysis Magnetised case

Induction equation for a small displacement $\boldsymbol{\xi}$ and a spatial dependence $\propto \exp(ikz)$:

$$\delta \boldsymbol{B} = i(\boldsymbol{k} \cdot \boldsymbol{B}_{z_0})\boldsymbol{\xi}$$

The magnetic tension force is then

$$\frac{\boldsymbol{B}_{\boldsymbol{z}_0} \cdot \boldsymbol{\nabla} \boldsymbol{B}}{\rho} = \frac{i(\boldsymbol{k} \cdot \boldsymbol{B}_{\boldsymbol{z}_0})}{\rho} \delta \boldsymbol{B} = -(\boldsymbol{k} \cdot \boldsymbol{v}_{\boldsymbol{A}})^2 \boldsymbol{\xi}$$

Resulting equation of motion for a fluid particle:

$$\ddot{x} - 2\Omega \dot{y} = -\left(\frac{d\Omega^2}{d\ln R} + (\boldsymbol{k} \cdot \boldsymbol{v}_A)^2\right) x$$
$$\ddot{y} + 2\Omega \dot{x} = -(\boldsymbol{k} \cdot \boldsymbol{v}_A)^2 y$$

Stability analysis Dispersion relation

Nonlinear evolution: ideal MHD case

Global simulations in the ideal MHD limit are consistent with observational constraints $\alpha \sim 10^{-3} {--} 10^{-2}$

[Hawley+ (1995) ; Fromang & Nelson (2006) ; Sorathia+ (2012)]

[Flock+ 2011]

Ionisation sources in protoplanetary discs

Ionisation Fraction

Protoplanetary disc plasmas are dominated by neutrals

Dead zone in protoplanetary discs

How large is the dead zone?

What's happening inside the dead zone?

lons and neutrals dynamics

Equation of motion for the neutrals:

$$\rho \frac{\partial v}{\partial t} + (\rho \boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{v} = -\boldsymbol{\nabla} P + \boldsymbol{f}_{ni}$$

With a drag force:

$$\boldsymbol{f}_{ni} = \gamma \rho \rho_i (\boldsymbol{v}_i - \boldsymbol{v})$$

For ions (assuming large collision frequency):

$$0 = \frac{1}{c} \boldsymbol{J} \times \boldsymbol{B} + \boldsymbol{f}_{in}$$

Resulting equation of motion & drift speed

$$ho rac{\partial v}{\partial t} + (
ho oldsymbol{v} \cdot oldsymbol{
abla}) oldsymbol{v} = -oldsymbol{
abla} P + rac{1}{c} oldsymbol{J} imes oldsymbol{B}$$
 $oldsymbol{v}_i - oldsymbol{v} = rac{1}{c \gamma
ho
ho_i} oldsymbol{J} imes oldsymbol{B}$

Electrons dynamics

• Induction equation:
$$\frac{\partial \boldsymbol{B}}{\partial t} = \boldsymbol{\nabla} \times \left(\boldsymbol{v_e} \times \boldsymbol{B} - \frac{4\pi\eta}{c} \boldsymbol{J} \right)$$

Non-ideal protoplanetary discs

Hall effect dominates in most of the disc midplane Ambipolar diffusion dominates in the upper layer

The shearing box model

Hall-MRI: turbulent viscosity Varying field strength and Ohmic resistivity

Transport is controlled by

$$\ell_{\rm H} \equiv \left(\frac{m_{\rm i}c^2}{4\pi e^2 n_{\rm i}}\right)^{1/2} \left(\frac{\rho}{\rho_{\rm i}}\right)^{1/2}$$

Hall-MRI animation: Bz

Zonal field structures in Hall-dominated discs

Box twice larger in *x*-*y*

anisation!

Conservation laws in Hall-MHD

Induction

$$\partial_t B = \nabla \times \left(v \times B - \frac{J \times B}{en_e} \right) \qquad \partial_t \omega = \nabla \times \left(v \times \omega + \frac{J \times B}{c\rho} \right)$$

$$\omega_C = \omega + \frac{eBn_e}{\rho_C}$$

$$\partial_t \omega_C = \nabla \times \left(v \times \omega_C \right)$$

Canonical vorticity behaves like magnetic field in ideal MHD
 Field line redistribution implies a redistribution of vorticity in the flow

Strong zonal flows in PP

long-lived zonal flows are associated to Hall-MRIGood for planet formation?

The Cherry on the cake

Conclusions

- Non ideal MHD effects are essential in PP discs
- Hall MRI reorganises the magnetic field creating large scale structures
- Potentially a strong impact on planet formation (dust agregation)