Molecular collisions in the interstellar medium

Alexandre Faure Institut de Planétologie et d'Astrophysique de Grenoble (IPAG)

Journée Théorie CPTGA, Grenoble, 7 april 2014

Outline

- 1. Interstellar molecules
- 2. Molecular excitation
- 3. Collisions out of equilibrium
- 4. Conclusions

1. Interstellar molecules

Molecular clouds the early phase of star formation

Ultra high-vacuum $n \sim 10^4 \,\mathrm{cm}^{-3}$ $(P \sim 10^{-13} \text{ mbar !})$ Cold *T* ∼10 K Ionized ξ (H₂) ~ 10⁻¹⁷ s⁻¹ x_∽ ~10⁻⁸

The periodic table for Astronomy

Interstellar chemistry in a nutshell

- H + H + grain \rightarrow H₂ + grain
- $\blacksquare CR + H_2 \rightarrow H_2^+ + CR'$
- $\blacksquare H_2^+ + H_2 \rightarrow H_3^+ + H$
- $\blacksquare C + H_3^+ \rightarrow CH^+ + H_2 \rightarrow \dots e^-, H_2 \dots \rightarrow CH, CH_4$
- $\blacksquare O + H_3^+ \rightarrow OH^+ + H_2 \rightarrow \dots e^-, H_2 \dots \rightarrow OH, H_2O$
- $\blacksquare N^{+} + H_{2} \rightarrow NH^{+} + H \rightarrow \dots e^{-}, H_{2} \dots \rightarrow NH, NH_{3}$

Interstellar molecules

2 atoms	3 atoms	4 atoms	5 atoms	6 atoms	7 atoms	8 atoms
H ₂ CP	H ₃ ⁺ MgCN	CH ₃	NH_3D^+	C_2H_4	CH ₃ NH ₂	CH ₃ CHNH
LiH ? AlO	CH ₂ NaCN	NH ₃	CH_4	CH ₃ OH	CH_3C_2H	CH ₂ CHCHO
CH CS	NH ₂ C ₂ S	H_3O^+	CH ₂ NH	CH ₃ CN	CH ₃ CHO	NH ₂ CH ₂ CN
CH ⁺ SiO	H ₂ O OCS	C_2H_2	SiH ₄	CH_3NC ?	c-C ₂ H ₄ O	CH ₃ COOH
NH PN	H_2O^+ SO ₂	H_2CN	CH ₃ O	CH ₂ CNH	CH ₂ CHOH	CH ₂ OHCHO
OH NS	C_2H $c-SiC_2$	$HCNH^+$	H_2COH^+	NHCHCN	CH ₂ CHCN	HCOOCH ₃
OH ⁺ AlF	HCN SiCN	H_2CO	c-C ₃ H ₂	NH ₂ CHO	C_6H	CH ₃ C ₃ N
HF PO	HNC SiNC	H_2O_2	H_2C_3	CH ₃ SH	C_6H^-	CH ₂ CCHCN
C ₂ SO	HCO C ₂ P	PH_3 ?	CH ₂ CN	C_4H_2	HC_5N	C_6H_2
CN SO ⁺	HCO ⁺ AlNC	C_3H	HNCNH	H_2C_4		H_2C_6
CN ⁻ NaCl	HOC ⁺ KCN	c-C ₃ H	H_2C_2O	HC_4N	9 atoms	C_7H
CO SiS	N_2H^+ TiO ₂	C_3H^+	NH ₂ CN	HC_3NH^+	CH ₂ CHCH ₃	10 atoms
CO ⁺ AlCl	HNO FeCN	HC_2N	HCOOH	HC ₂ CHO	CH ₃ OCH ₃	CH ₃ COCH ₃
N ₂ TiO	HO_2	HNCO	C_4H	$c-H_2C_3O$	CH ₃ CH ₂ OH	OHCH ₂ CH ₂ OH
NO FeO?	H_2S	HCNO	C_4H^-	C_5H	CH ₃ CH ₂ CN	CH ₃ CH ₂ CHO
CF ⁺ KCl	H_2Cl^+	HOCN	HC ₃ N	C_5N	CH ₃ CONH ₂	CH_3C_5N
SiH?	HCP	HCO_2^+	HC_2NC	$C_5 N^-$	CH_3C_4H	11 atoms
O_2	N_2O	H_2CS	HNC ₃		C_8H	C ₂ H ₅ OCHO
SH	AlOH	C_3N	CNCHO		C_8H^-	CH ₃ COOCH ₃
SH^+	CO_2	C_3N^-	C_5		HC_7N	CH ₃ C ₆ H
HCl	HCS^+	C_3O		>12 atoms		HC ₉ N
HCl^+	C_2O	HNCS		HC ₁₁ N	,	12 atoms
SiC	C ₃	HSCN		$C_{14}H_{10}^+$?		C ₂ H ₅ OCH ₃ ?
SiN	MgNC	c-SiC ₃		C ₆₀		C ₃ H ₇ CN
		C_3S		C_{60}^{+}		C_6H_6
				C_{70}		

Credit: Agundez & Wakelam, Chem. Rev. 2013

Microwave observations

Credit: ESO, ALMA

Radiative transfer

• RT equation
$$\frac{dI_{\nu}}{ds} = -\alpha_{\nu}(\vec{r})I_{\nu} + j_{\nu}(\vec{r})$$
• Statistical equilibrium $\begin{cases} \frac{dn_1}{dt} = -n_1(B_{12}\bar{J} + C_{12}) + n_2(A_{21} + B_{21}\bar{J} + C_{21}) \\ \frac{dn_2}{dt} = n_1(B_{12}\bar{J} + C_{12}) - n_2(A_{21} + B_{21}\bar{J} + C_{21}), \end{cases}$
• Excitation temperature $\frac{n_2}{n_1} = \frac{g_2}{g_1}e^{-\frac{h\nu}{kT_{ex}}}$

• Antenna temperature $\Delta T_a^* = [J_\nu(T_{ex}) - J_\nu(T_{cmb}) - T_c](1 - e^{-\tau})$

with $J_{\nu}(T) = (h\nu/k_B)/(e^{h\nu/k_BT} - 1)$.

Excitation temperature

- Local thermodynamical equilibrium
- Radiative equilibrium
- sub-thermal excitation
- population inversion (maser)
- anti-inversion (cooling)

2. Molecular excitation

Molecular energy transfer at low energy ($E_c < 100 \text{ cm}^{-1}$)

Theoretical framework: Born-Oppenheimer approximation

Solve the « electronic »
 Schrödinger equation

- CCSD(T)
- Quadruple zeta basis set
- BSSE correction
- Solve the nuclear motion
 - Close-coupling expansion
 - S-matrix
 - Cross sections, rate coefficients

Credit: van der Avoird et al. Chem. Phys. 2010

When theory untangles experiment

Theory Untangles the High-Resolution Infrared Spectrum of the *ortho* -H₂-CO van der Waals Complex Piotr Jankowski *et al. Science* **336**, 1147 (2012); DOI: 10.1126/science.1221000

Observation of Partial Wave Resonances in Low-Energy O₂-H₂ Inelastic Collisions Simon Chefdeville *et al. Science* **341**, 1094 (2013); DOI: 10.1126/science.1241395

CO rotational excitation

3. Collisions out of equilibrium

« Anomalous » H_2CO absorption ($\lambda = 6$ cm)

Credit: Troscompt et al. A&A (2009b)

Indirect probe of para-H₂ $T_{\rm ex}$ < 2.725 K

Credit: Troscompt et al. A&A (2009a, 2009b)

Methyl formate (HCOOCH₃) emission

Credit: NASA JPL/Caltech/Univ. of Wisconsin

Weak masers below 30 GHz $T_{ex} < 0$

Credit: Faure et al. J. Chem. Phys. (2011) Faure et al. ApJ (2014)

CN as a measure of the cosmic microwave background

Measure of electron density $T_{ex} = 2.725 + 0.029 \text{ K}$

5. Conclusion

The interstellar medium: « molecules in Wonderland »

- The interstellar medium is a unique laboratory to study state-to-state molecular dynamics
- Non-equilibrium processes are common in space: non-LTE populations, masers, etc.
- State-of-the-art molecular physics is required