The SLapH Method in tmLQCD - Part 1

Christopher Helmes C. Jost, B. Knippschild, C. Urbach, M. Werner

May 26, 2014

- 1 Motivation
- 2 Stochastic Laplacian Heaviside Method and Tuning
- 3 Displacement
- 4 Conclusion

Excited States in QCD

- Precise measurements of excited states in LQCD
- Examine large lattice volumes with Laplacian Heaviside Method
- Reduce variance of effective masses with stochastic ansatz
- Large operator basis by displacing operators

Stochastic LapH method - Overview

- Method to estimate quark propagation by Morningstar et al.
- Quark field smearing $\widetilde{\psi} = \mathcal{S}\psi$
 - 1 Reduction of contribution of excited states
 - 2 Efficient decomposition to "Perambulators"
 - 3 Computationally cheap to build large operator basis
- Combine Smearing with stochastic approach to reduce numerical costs
- Reduce variance with dilution of random vectors

Quark Field Smearing I

- Laplacian Heaviside Smearing $\widetilde{\psi}(n) = S(n, m)\psi(m)$
- Smearing kernel: \mathcal{S} , Heaviside function: $\Theta(x)$, Laplace operator: $\widetilde{\Delta}$

$$\mathcal{S} = \Theta\left(\sigma_{s}^{2} + \widetilde{\Delta}\right)$$

 σ_{s}^{2} : cutoff for spectrum of $\widetilde{\Delta}$

• $\widetilde{\Delta}$ large sparse and hermitian matrix of dimensions $(N_s^3 \cdot 3) \times (N_s^3 \cdot 3)$

$$\widetilde{\Delta}_{nm}(t) = \sum_{j=1}^{3} \left(\widetilde{U}_{j}(n,t) \delta_{n+\hat{j},m} + \widetilde{U}_{j}^{\dagger}(n-\hat{j},t) \delta_{n-\hat{j},m} \right) - 6\delta_{nm}$$

• $N_s=32
ightarrow9.7 imes10^9$ complex entries in $\widetilde{arDelta}(t)$

Quark Field Smearing II

• Decomposition into eigenvalues $\Lambda_{\Delta} = \text{diag}(\lambda_1, \dots, \lambda_{\Delta})$:

$$\widetilde{\Delta} = V_{\Delta}^{\dagger} \Lambda_{\Delta} V_{\Delta}$$

• Only interested in N_{ν} lowest eigenvectors of Laplace operator

$$S = V_s^{\dagger} \Theta \underbrace{\left(\sigma_s^2 + \Lambda_{\Delta}\right)}_{=\Lambda_s} V_s$$

- V_s contains N_v eigenvectors as columns
- V_s is $(N_s^3 \cdot N_t \cdot 3) \times (N_t \cdot N_v)$ matrix \Rightarrow store V_s

Quark Propagation Inside Correlation Functions

• Quark propagation with smeared sources:

- Smearing ${\cal S}$ well approximated by ${\cal S}=V_sV_s^\dagger$

$$\Rightarrow \mathcal{Q} = V_s \left(V_s^{\dagger} M^{-1} V_s
ight) V_s^{\dagger}$$

- Expensive: obtain $M^{-1}V_s$ from solving $Mx = v_s^{(k)}$ for $k \in (0, N_v)$
- $(V_s^{\dagger} M^{-1} V_s)$ orders of magnitude smaller in memory than M^{-1}
- Inversions: $N_v \cdot N_t \cdot 4$ per configuration and quark mass

$$N_{v} = 250, N_{t} = 64 \Rightarrow 64\,000$$

Eigensystems

- Decomposition into Λ_s and V_s on every timeslice for each configuration
- Fast solution: C-libraries SLEPc and PETSc
- Thick restart Lanczos algorithm
- Additionally accelerated by Chebyshev polynomials

Chebyshev Acceleration: Example for 4³ Lattice

- Fast convergence if eigenvalues widely spaced
- $B = 1 + \frac{2}{\lambda_L \lambda_C} (\widetilde{\Delta} + \lambda_C)$, λ_i s tuned with boundaries of spectrum

Chebyshev Acceleration: Example for 4³ Lattice

- *B* shifts unwanted part to (-1, 1)
- Chebyshev polynomial of first kind $T_8(B)$

Chebyshev Acceleration: Example for 4³ Lattice

- Eigenvectors unchanged
- Speedup of factor 4 despite application of T_8

Distillation Operator and Sourceshape

• Measure effect of Distillation with Sourceshape $\Psi(r,t)$

Influence of N_v on C_π

Gauge Link Smearing and Eigenspectrum

Influence of ideal HYP-, badly tuned HEX- and No gauge link Smearing on spectrum of $\widetilde{\varDelta}$

Figure: Data: 24^3 lattice, lattice spacing a = 0.086 fm

Influence of Gauge Link Smearing

Ideal HYP-, badly tuned HEX- and No gauge link Smearing influence $m_{eff}(x_0/a)$

Christopher Helmes

Stochastic Approximation

- Estimate ${\mathcal Q}$ up to accuracy of gauge noise limit

• N_R random vectors ρ in V_s , T, D

•
$$E(\rho) = 0$$
 and $E(\rho \rho^{\dagger}) = \mathbb{1}$

• Dilution projections $P^{(b)}
ho$ zero many offdiagonal elements of $ho
ho^{\dagger}$

Dilution Schemes

- Each $P^{(b)}$ combines dilution in Time, Dirac space and LapH space
- Statistical errors of correlation functions
 - Random vectors $\propto \frac{1}{\sqrt{N_R}}$
 - Dilution vectors $\propto \frac{1}{N_D}$

 \Rightarrow Find balance between N_R and N_D for best signal in dependence of number of inversions

• Inversions: typically between 1500 and 2500 per configuration

Quarklines

• Use
$$\sum_{b} P^{(b)} P^{(b)\dagger} = E(\rho \rho^{\dagger}) = 1$$
 in Q
 $Q = SM^{-1}V_{s}V_{s}^{\dagger}$
 $= \sum_{b} SM^{-1}V_{s}P^{(b)}E(\rho \rho^{\dagger})P^{(b)\dagger}V_{s}^{\dagger}$
 $= \sum_{b} E\left(SM^{-1}V_{s}P^{(b)}\rho\left(V_{s}P^{(b)}\rho\right)^{\dagger}\right)$

- Reuse sources $V_s P^{(b)}
 ho$ and "Perambulators" $V_s^{\dagger} M^{-1} V_s P^{(b)}
 ho$
- Each ${\mathcal Q}$ needs independent ρ for unbiased estimation
- Possible tuning via N_R and dilution scheme

Influence of Number of inversions on C_{π}

Relative error on effective mass

Influence of N_R on C_π

Relative error on effective mass

Multiple Operators With Same J^{PC}

• Spatially extend Interpolators

$$\overline{\psi}(\vec{x},t)\Gamma \stackrel{\leftrightarrow}{D} \psi(\vec{x},t), \quad \stackrel{\leftrightarrow}{D} = \stackrel{\leftarrow}{D} - \stackrel{\rightarrow}{D}$$

• Fermion bilinears using gamma matrices and D_m

$$\overset{\leftrightarrow}{D}_{m=-1} = \frac{i}{\sqrt{2}} \left(\overset{\leftrightarrow}{D}_x - i \overset{\leftrightarrow}{D}_y \right), \quad \overset{\leftrightarrow}{D}_{m=+1} = -\frac{i}{\sqrt{2}} \left(\overset{\leftrightarrow}{D}_x + i \overset{\leftrightarrow}{D}_y \right),$$
$$\overset{\leftrightarrow}{D}_{m=0} = i \overset{\leftrightarrow}{D}_z$$

- Clebsch-Gordan-coefficients for definite J, PC via Γ structure
- Example: *J* = 0, 1, 2:

$$\left(\Gamma \times D_{J=1}^{[1]}\right)^{J,M} = \sum_{m_1,m_2} \langle 1,m_1;1,m_2|J,M\rangle \,\overline{\psi}(\vec{x},t)\Gamma_{m_1} \overset{\leftrightarrow}{D}_{m_2} \psi(\vec{x},t)$$

Realisation

• Correlation functions (stochastic contribution suppressed)

$$C_{ij}(t,t') = \left\langle \left[V^{\dagger} \Gamma_i \overset{\leftrightarrow}{D} V \right]_t \left[V^{\dagger} M^{-1} V \right]_{t,t'} \left[V^{\dagger} \Gamma_j \overset{\leftrightarrow}{D} V \right]_{t'} \left[V^{\dagger} M^{-1} V \right]_{t',t} \right\rangle$$

• Expansion:

$$V^{\dagger} \overset{\leftrightarrow}{D}_{i} V = V^{\dagger} \overset{\leftarrow}{D}_{i} V - V^{\dagger} \vec{D}_{i} V$$

• Sufficient to calculate second term:

$$V^{\dagger} \stackrel{\leftarrow}{D}_{i} V = \left(V^{\dagger} \stackrel{\rightarrow}{D}_{i} V \right)^{\dagger}$$

Correlation Matrix for π^+

• Non-vanishing pseudoscalar contributions:

$$\mathcal{O}_{1}(t) = \overline{d}(t)\gamma_{5}u(t), \quad \mathcal{O}_{2}(t) = \overline{d}(t)\gamma_{0}\gamma_{5}u(t)$$
$$\mathcal{O}_{3}(t) = \overline{d}(t)\left[\epsilon_{ijk}\gamma_{j}\gamma_{k}\overleftrightarrow{D}_{i}\right]u(t)$$

• Construct C_{lm}

$$C_{lm}(t,t') = \begin{pmatrix} \langle \mathcal{O}_1(t)\mathcal{O}_1(t') \rangle & \langle \mathcal{O}_1(t)\mathcal{O}_2(t') \rangle & \langle \mathcal{O}_1(t)\mathcal{O}_3(t') \rangle \\ \langle \mathcal{O}_2(t)\mathcal{O}_1(t') \rangle & \langle \mathcal{O}_2(t)\mathcal{O}_2(t') \rangle & \langle \mathcal{O}_2(t)\mathcal{O}_3(t') \rangle \\ \langle \mathcal{O}_1(t)\mathcal{O}_3(t') \rangle & \langle \mathcal{O}_3(t)\mathcal{O}_2(t') \rangle & \langle \mathcal{O}_3(t)\mathcal{O}_3(t) \rangle \end{pmatrix} \end{cases}$$

• Solve associated GEVP

Summary

- Tuning of Stochastic LapH method:
 - N_{ν} for suppression of excited states
 - N_R for small number of inversions
 - Dilution scheme for optimal variance reduction in inversions

• Work in progress: Implementation of Displacement

Thank you

1. Wick Rotation of Real Minkowski Space

• Wick rotate Minkowski space to euclidean space introducing imaginary times

$$t = -i\tau \Rightarrow ds^2 = -(dt^2) + dx^2 + dy^2 + dz^2$$
$$= d\tau^2 + dx^2 + dy^2 + dz^2$$

• Path integral then becomes:

$$\langle O_2(t)O_1(0)\rangle = \frac{1}{Z} \int \mathcal{D}\left[\overline{\psi},\psi\right] \mathcal{D}\left[U\right] e^{-S_E} O_2 O_1$$

$$Z = \int \mathcal{D}\left[\overline{\psi},\psi\right] \mathcal{D}\left[U\right] e^{-S_E}$$

• Ocillating imaginary part has vanished in favour of exponential decay

2. Discretization of Euclidean Space

- Introduce periodic 4-dimensional Euclidean lattice Λ

$$A = \{n = (n_0, n_1, n_2, n_3) \mid n_i = 0, \dots, N_S - 1; n_0 = 0, \dots, N_T - 1\}$$

- My calculations: N_S from 20 to 48, N_T from 40 to 96
- Distance of neighboring points a, "lattice spacing", usually $a \approx 0.1 \, {\rm fm}$
- Used as automatic UV-cutoff

Wilson tmLQCD: Fermionic Action

• Framework: Wilson twisted mass lattice QCD for $N_f = 2 + 1 + 1$

$$S_{F}^{tm}\left[\overline{\chi}_{l},\chi_{l},U\right] = a^{4} \sum_{k,n\in\Lambda} \overline{\chi}_{l}(k) \left(M(k|n)\mathbb{1}_{2} + m\mathbb{1}_{2}\delta_{kn} + i\mu\gamma_{5}\tau^{3}\delta_{kn}\right)\chi_{l}(n)$$

• Twisted mass μ as an infrared regulator for exceptional configurations

• Automatic $\mathcal{O}(a)$ improvement on observables at maximal twist

Stochastic Approximation

- Estimate ${\cal Q}$ up to accuracy of statistical fluctuations of $\widetilde{U}_{\mu}(n)$
- *R* Random vectors η_r obeying $E(\eta_i) = 0$ and $E(\eta_i \eta_i^*) = 1$

$$M_{ij}^{-1} \approx rac{1}{N_R} \sum_{r=1}^{N_R} x_i^r \eta_j^{r*}, \quad x^r = M^{-1} \eta^r$$

- Problem: too large variances in estimation of M_{ii}^{-1}
- Solution: dilution of η_r by Projections $P^{[b]},\,\eta^{[b]r}=P^{[b]}\eta^r$

$$M_{ij}^{-1} \approx \frac{1}{N_R} \sum_{r=1}^{N_R} \sum_{b} x_i^{[b]r} \eta_j^{[b]r*}, \quad x^{[b]r} = M^{-1} \eta^{[b]r}$$

Stochastic Quarklines

• Quarklines read:

$$Q = \sum_{b} E\left(SM^{-1}V_{s}P^{(b)}\rho\left(V_{s}P^{(b)}\rho\right)^{\dagger}\right)$$

• Define:

$$\varphi_u^{[b]}(\rho) = SM^{-1}V_sP^{(b)}\rho$$
$$\varrho_v^{[b]}(\rho) = V_sP^{(b)}\rho$$

• Quarklines now approximable using smeared diluted sources $\varrho^{[b]}(\rho)$ and sinks $\varphi^{[b]}(\rho)$

$$\mathcal{Q}_{uv}^{AB} \approx \frac{1}{N_R} \delta_{AB} \sum_{r=1}^{N_R} \sum_b \varphi_u^{[b]}(\rho) \varrho_v^{[b]*}(\rho)$$

Gerschgorin-circles

$$M = \begin{pmatrix} -5 & -1 & 0 & 1 \\ 0.2 & 8 & 0.2 & 0.2 \\ 1 & 1 & 2 & 1 \\ -1 & -1 & -1 & -8 \end{pmatrix} \qquad \text{EV} = (-7.53, -5.33, 1.86, 8.00)$$
$$S_1 = (-5, 2): \quad S_2 = (8, 0, 6): \quad S_3 = (2, 1, 2): \quad S_4 = (-8, 2, 2)$$

Figure: Gerschgorin-circles corresponding to M

Christopher Helmes

SLapH in tmLQCD - 1

PETSc and SLEPc

- Two libraries specialized for solving large sparse eigenvalue problems
- Numerous algorithms available
- Highly customizable via Shell method for introducing own operations
- Testing lead to Krylov-Schur method with no preconditioning

Time Consumption in s

alltime	matmult_time	9 <u>9–</u> 99119	
419.87	0.67	d dama	
308.09	125.02	gu_ciscistat	
	24.15	d oisonstat	
	34.14	gd_pbjacobi	
	34.11	gu_none	
	74.90	kryiovschur_ioid	
190.88	13.67	ga_sor	
185.65	47.37	ja_mg	
168.64	24.01	gd_mg	
160.42	12.96	gd_gasm	
158.88	81.08	jd_eisenstat	
158.82	12.93	gd_asm	
154.99	12.91	gd_bjacobi	
153.71	12.93	gd_ilu	
140.51	33.93	jd_sor	
140.04	73.75	jd_jacobi	100
139.47	73.53	jd_pbjacobi	404
116.91	32.62	jd_asm	201
114.56	71.23	jd none	201
109.22	32.51	jd gasm	001
102.81	32.57	id ilu	300
100.36	31.97	id biacobi	
60.96	8.38	krylovschur shift	400

Figure: Time consumption of solving algorithms

Christo	oher	He	Imes

Sourceshape and Lattice Volume

 $\Psi(r)$ scales with lattice volume, for same σ factor of $\frac{N_{s1}^3}{N_{s2}^3}$

Christopher Helmes

SLapH in tmLQCD - 1

Sourceshape and Lattice Volume

 $\Psi(r)$ scales with lattice volume, for same σ factor of $\frac{N_{s1}^3}{N_{s2}^3}$

SLapH in tmLQCD - 1

Hypercubic Blocking¹

- Smoothes gauge field $U_{\mu}(n)$
- Improves eigenspectrum of $\widetilde{\varDelta}$
- 3 parameters: "staple weights" α_1, α_2 and iterations n_i

¹A.Hasenfratz, F.Knechtli, Phys. Rev. D64 (2001) 034504

Tuning α_1 and α_2

Figure: scan through the parameter plane (α_1, α_2)

Optimal parameters: $n_i = 3$, $\alpha_1 = 0.62$, $\alpha_2 = 0.58 \Rightarrow \lambda_1 = 0.118$ Christopher Helmes $\lambda_1 = 0.118$ May 26, 2014 10 / 11

Thermal States

• Total time extent T, Partition function $Z = tr(e^{-HT})$

$$\langle \mathcal{O}(t)\overline{\mathcal{O}}(0) \rangle = rac{1}{Z} \sum_{m,n} |\langle n|\mathcal{O}|m \rangle|^2 e^{-(\mathcal{E}_m + \mathcal{E}_n)T/2} \cosh\left((\mathcal{E}_m - \mathcal{E}_n)(t - T/2)\right)$$

- For finite T contributions from $\langle n|=\langle\pi^+|$ and $\langle m|=\langle\pi^-|$

$$\frac{1}{Z} \left| \langle \pi^+ | \mathcal{O}_{\pi\pi} | \pi^- \rangle \right|^2 e^{-m_{\pi}T}$$

• Comparable to standard contribution at t = T/2

$$\frac{1}{Z} \left| \langle \pi^+ \pi^+ | \mathcal{O}_{\pi\pi} | 0 \rangle \right|^2 e^{-E_{\pi\pi}^{I=2}T/2} \cosh(E_{\pi\pi}^{I=2}(t-T/2))$$