The SLapH Method in tmLQCD - Part 1

Christopher Helmes
C. Jost, B. Knippschild, C. Urbach, M. Werner

May 26, 2014

Outline

(1) Motivation

2 Stochastic Laplacian Heaviside Method and Tuning

3 Displacement

4 Conclusion

Excited States in QCD

- Precise measurements of excited states in LQCD
- Examine large lattice volumes with Laplacian Heaviside Method
- Reduce variance of effective masses with stochastic ansatz
- Large operator basis by displacing operators

Stochastic LapH method - Overview

- Method to estimate quark propagation by Morningstar et al.
- Quark field smearing $\widetilde{\psi}=\mathcal{S} \psi$
(1) Reduction of contribution of excited states

2 Efficient decomposition to "Perambulators"
(3) Computationally cheap to build large operator basis

- Combine Smearing with stochastic approach to reduce numerical costs
- Reduce variance with dilution of random vectors

Quark Field Smearing I

- Laplacian Heaviside Smearing $\widetilde{\psi}(n)=\mathcal{S}(n, m) \psi(m)$
- Smearing kernel: \mathcal{S}, Heaviside function: $\Theta(x)$, Laplace operator: $\widetilde{\Delta}$

$$
\mathcal{S}=\Theta\left(\sigma_{s}^{2}+\widetilde{\Delta}\right)
$$

σ_{s}^{2} : cutoff for spectrum of $\widetilde{\Delta}$

- $\widetilde{\Delta}$ large sparse and hermitian matrix of dimensions $\left(N_{s}^{3} \cdot 3\right) \times\left(N_{s}^{3} \cdot 3\right)$

$$
\widetilde{\Delta}_{n m}(t)=\sum_{j=1}^{3}\left(\widetilde{U}_{j}(n, t) \delta_{n+\hat{j}, m}+\widetilde{U}_{j}^{\dagger}(n-\hat{j}, t) \delta_{n-\hat{j}, m}\right)-6 \delta_{n m}
$$

- $N_{s}=32 \rightarrow 9.7 \times 10^{9}$ complex entries in $\widetilde{\Delta}(t)$

Quark Field Smearing II

- Decomposition into eigenvalues $\Lambda_{\Delta}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{\Delta}\right)$:

$$
\widetilde{\Delta}=V_{\Delta}^{\dagger} \Lambda_{\Delta} V_{\Delta}
$$

- Only interested in N_{v} lowest eigenvectors of Laplace operator

$$
\mathcal{S}=V_{s}^{\dagger} \Theta \underbrace{\left(\sigma_{s}^{2}+\Lambda_{\Delta}\right)}_{=\Lambda_{s}} V_{s}
$$

- V_{s} contains N_{v} eigenvectors as columns
- V_{s} is $\left(N_{s}^{3} \cdot N_{t} \cdot 3\right) \times\left(N_{t} \cdot N_{v}\right)$ matrix \Rightarrow store V_{s}

Quark Propagation Inside Correlation Functions

- Quark propagation with smeared sources:

$$
\mathcal{Q}=\bar{\psi}(n) \psi(m)=M^{-1}(n \mid m)
$$

- Smearing \mathcal{S} well approximated by $\mathcal{S}=V_{s} V_{s}^{\dagger}$

$$
\Rightarrow \mathcal{Q}=V_{s}\left(V_{s}^{\dagger} M^{-1} V_{s}\right) V_{s}^{\dagger}
$$

- Expensive: obtain $M^{-1} V_{s}$ from solving $M x=v_{s}^{(k)}$ for $k \in\left(0, N_{v}\right)$
- $\left(V_{s}^{\dagger} M^{-1} V_{s}\right)$ orders of magnitude smaller in memory than M^{-1}
- Inversions: $N_{v} \cdot N_{t} \cdot 4$ per configuration and quark mass

$$
N_{v}=250, N_{t}=64 \Rightarrow 64000
$$

Eigensystems

- Decomposition into Λ_{s} and V_{s} on every timeslice for each configuration
- Fast solution: C-libraries SLEPc and PETSc
- Thick restart Lanczos algorithm
- Additionally accelerated by Chebyshev polynomials

Chebyshev Acceleration: Example for 4^{3} Lattice

- Fast convergence if eigenvalues widely spaced
- $B=1+\frac{2}{\lambda_{L}-\lambda_{C}}\left(\widetilde{\Delta}+\lambda_{C}\right), \lambda_{i}$ s tuned with boundaries of spectrum

Chebyshev Acceleration: Example for 4^{3} Lattice

- B shifts unwanted part to $(-1,1)$
- Chebyshev polynomial of first kind $T_{8}(B)$

Chebyshev Acceleration: Example for 4^{3} Lattice

- Eigenvectors unchanged
- Speedup of factor 4 despite application of T_{8}

Distillation Operator and Sourceshape

- Measure effect of Distillation with Sourceshape $\Psi(r, t)$

$$
\Psi(r, t)=\sum_{n} \sqrt{\operatorname{tr}\left(\square_{n, n+r}(t) \square_{n+r, n}(t)\right)}, \quad \square(t)=V_{s}(t) V_{s}^{\dagger}(t)
$$

Influence of N_{V} on C_{π}

Gauge Link Smearing and Eigenspectrum

 Influence of ideal HYP-, badly tuned HEX- and No gauge link Smearing on spectrum of $\widetilde{\Delta}$

Eigenspectrum

Normalised to lowest λ

Figure: Data: 24^{3} lattice, lattice spacing $a=0.086 \mathrm{fm}$

Influence of Gauge Link Smearing

Ideal HYP-, badly tuned HEX- and No gauge link Smearing influence $m_{\text {eff }}\left(x_{0} / a\right)$

Stochastic Approximation

- Estimate \mathcal{Q} up to accuracy of gauge noise limit
- N_{R} random vectors ρ in V_{s}, T, D
- $E(\rho)=0$ and $E\left(\rho \rho^{\dagger}\right)=\mathbb{1}$
- Dilution projections $P^{(b)} \rho$ zero many offdiagonal elements of $\rho \rho^{\dagger}$

Dilution Schemes

- Each $P^{(b)}$ combines dilution in Time, Dirac space and LapH space
- Statistical errors of correlation functions
- Random vectors $\propto \frac{1}{\sqrt{N_{R}}}$
- Dilution vectors $\propto \frac{1}{N_{D}}$
\Rightarrow Find balance between N_{R} and N_{D} for best signal in dependence of number of inversions
- Inversions: typically between 1500 and 2500 per configuration

Quarklines

- Use $\sum_{b} P^{(b)} P^{(b) \dagger}=E\left(\rho \rho^{\dagger}\right)=\mathbb{1}$ in \mathcal{Q}

$$
\begin{aligned}
\mathcal{Q} & =\mathcal{S} M^{-1} V_{s} V_{s}^{\dagger} \\
& =\sum_{b} \mathcal{S} M^{-1} V_{s} P^{(b)} E\left(\rho \rho^{\dagger}\right) P^{(b) \dagger} V_{s}^{\dagger} \\
& =\sum_{b} E\left(\mathcal{S} M^{-1} V_{s} P^{(b)} \rho\left(V_{s} P^{(b)} \rho\right)^{\dagger}\right)
\end{aligned}
$$

- Reuse sources $V_{s} P^{(b)} \rho$ and "Perambulators" $V_{s}^{\dagger} M^{-1} V_{s} P^{(b)} \rho$
- Each \mathcal{Q} needs independent ρ for unbiased estimation
- Possible tuning via N_{R} and dilution scheme

Influence of Number of inversions on C_{π}

Relative error on effective mass

Influence of N_{R} on C_{π}

Relative error on effective mass

Multiple Operators With Same JPC

- Spatially extend Interpolators

$$
\bar{\psi}(\vec{x}, t) \Gamma \stackrel{\leftrightarrow}{D} \psi(\vec{x}, t), \quad \stackrel{\leftrightarrow}{D}=\overleftarrow{D}-\vec{D}
$$

- Fermion bilinears using gamma matrices and $\stackrel{\leftrightarrow}{D}_{m}$

$$
\begin{gathered}
\stackrel{\leftrightarrow}{D}_{m=-1}=\frac{i}{\sqrt{2}}\left(\stackrel{\leftrightarrow}{D}_{x}-i \stackrel{\leftrightarrow}{D}_{y}\right), \quad \stackrel{\leftrightarrow}{D}_{m=+1}=-\frac{i}{\sqrt{2}}\left(\stackrel{\leftrightarrow}{D}_{x}+i \stackrel{\leftrightarrow}{D}_{y}\right), \\
\stackrel{\leftrightarrow}{D}_{m=0}=i \stackrel{\leftrightarrow}{D}_{z}
\end{gathered}
$$

- Clebsch-Gordan-coefficients for definite J, PC via Γ structure
- Example: $J=0,1,2$:

$$
\left(\Gamma \times D_{J=1}^{[1]}\right)^{J, M}=\sum_{m_{1}, m_{2}}\left\langle 1, m_{1} ; 1, m_{2} \mid J, M\right\rangle \bar{\psi}(\vec{x}, t) \Gamma_{m_{1}} \stackrel{\leftrightarrow}{D}_{m_{2}} \psi(\vec{x}, t)
$$

Realisation

- Correlation functions (stochastic contribution suppressed)

$$
C_{i j}\left(t, t^{\prime}\right)=\left\langle\left[V^{\dagger} \Gamma_{i} \stackrel{\leftrightarrow}{D} V\right]_{t}\left[V^{\dagger} M^{-1} V\right]_{t, t^{\prime}}\left[V^{\dagger} \Gamma_{j} \stackrel{\leftrightarrow}{D} V\right]_{t^{\prime}}\left[V^{\dagger} M^{-1} V\right]_{t^{\prime}, t}\right\rangle
$$

- Expansion:

$$
V^{\dagger} \stackrel{\leftrightarrow}{D}_{i} V=V^{\dagger} \overleftarrow{D}_{i} V-V^{\dagger} \vec{D}_{i} V
$$

- Sufficient to calculate second term:

$$
V^{\dagger} \overleftarrow{D}_{i} V=\left(V^{\dagger} \vec{D}_{i} V\right)^{\dagger}
$$

Correlation Matrix for π^{+}

- Non-vanishing pseudoscalar contributions:

$$
\begin{aligned}
& \mathcal{O}_{1}(t)=\bar{d}(t) \gamma_{5} u(t), \quad \mathcal{O}_{2}(t)=\bar{d}(t) \gamma_{0} \gamma_{5} u(t) \\
& \mathcal{O}_{3}(t)=\bar{d}(t)\left[\epsilon_{i j k} \gamma_{j} \gamma_{k} \stackrel{\leftrightarrow}{D_{i}}\right] u(t)
\end{aligned}
$$

- Construct $C_{l m}$

$$
C_{l m}\left(t, t^{\prime}\right)=\left(\begin{array}{ccc}
\left\langle\mathcal{O}_{1}(t) \mathcal{O}_{1}\left(t^{\prime}\right)\right\rangle & \left\langle\mathcal{O}_{1}(t) \mathcal{O}_{2}\left(t^{\prime}\right)\right\rangle & \left\langle\mathcal{O}_{1}(t) \mathcal{O}_{3}\left(t^{\prime}\right)\right\rangle \\
\left\langle\mathcal{O}_{2}(t) \mathcal{O}_{1}\left(t^{\prime}\right)\right\rangle & \left\langle\mathcal{O}_{2}(t) \mathcal{O}_{2}\left(t^{\prime}\right)\right\rangle & \left\langle\mathcal{O}_{2}(t) \mathcal{O}_{3}\left(t^{\prime}\right)\right\rangle \\
\left\langle\mathcal{O}_{1}(t) \mathcal{O}_{3}\left(t^{\prime}\right)\right\rangle & \left\langle\mathcal{O}_{3}(t) \mathcal{O}_{2}\left(t^{\prime}\right)\right\rangle & \left\langle\mathcal{O}_{3}(t) \mathcal{O}_{3}\left(t^{\prime}\right)\right\rangle
\end{array}\right)
$$

- Solve associated GEVP

Summary

- Tuning of Stochastic LapH method:
- N_{v} for suppression of excited states
- N_{R} for small number of inversions
- Dilution scheme for optimal variance reduction in inversions
- Work in progress: Implementation of Displacement

Thank you

1. Wick Rotation of Real Minkowski Space

- Wick rotate Minkowski space to euclidean space introducing imaginary times

$$
\begin{aligned}
t=-i \tau \Rightarrow d s^{2}= & -\left(d t^{2}\right)+d x^{2}+d y^{2}+d z^{2} \\
& =d \tau^{2}+d x^{2}+d y^{2}+d z^{2}
\end{aligned}
$$

- Path integral then becomes:

$$
\begin{aligned}
\left\langle O_{2}(t) O_{1}(0)\right\rangle & =\frac{1}{Z} \int \mathcal{D}[\bar{\psi}, \psi] \mathcal{D}[U] e^{-S_{E}} O_{2} O_{1} \\
Z & =\int \mathcal{D}[\bar{\psi}, \psi] \mathcal{D}[U] e^{-S_{E}}
\end{aligned}
$$

- Ocillating imaginary part has vanished in favour of exponential decay

2. Discretization of Euclidean Space

- Introduce periodic 4-dimensional Euclidean lattice Λ

$$
\Lambda=\left\{n=\left(n_{0}, n_{1}, n_{2}, n_{3}\right) \mid n_{i}=0, \ldots, N_{S}-1 ; n_{0}=0, \ldots, N_{T}-1\right\}
$$

- My calculations: N_{S} from 20 to $48, N_{T}$ from 40 to 96
- Distance of neighboring points a, "lattice spacing", usually $a \approx 0.1 \mathrm{fm}$
- Used as automatic UV-cutoff

Wilson tmLQCD: Fermionic Action

- Framework: Wilson twisted mass lattice QCD for $N_{f}=2+1+1$

$$
S_{F}^{t m}\left[\bar{\chi}_{l}, \chi_{I}, U\right]=a^{4} \sum_{k, n \in \Lambda} \bar{\chi}_{l}(k)\left(M(k \mid n) \mathbb{1}_{2}+m \mathbb{1}_{2} \delta_{k n}+i \mu \gamma_{5} \tau^{3} \delta_{k n}\right) \chi_{I}(n)
$$

- Twisted mass μ as an infrared regulator for exceptional configurations
- Automatic $\mathcal{O}(a)$ improvement on observables at maximal twist

Stochastic Approximation

- Estimate \mathcal{Q} up to accuracy of statistical fluctuations of $\widetilde{U}_{\mu}(n)$
- R Random vectors η_{r} obeying $E\left(\eta_{i}\right)=0$ and $E\left(\eta_{i} \eta_{j}^{*}\right)=1$

$$
M_{i j}^{-1} \approx \frac{1}{N_{R}} \sum_{r=1}^{N_{R}} x_{i}^{r} \eta_{j}^{r *}, \quad x^{r}=M^{-1} \eta^{r}
$$

- Problem: too large variances in estimation of $M_{i j}^{-1}$
- Solution: dilution of η_{r} by Projections $P^{[b]}, \eta^{[b] r}=P^{[b]} \eta^{r}$

$$
M_{i j}^{-1} \approx \frac{1}{N_{R}} \sum_{r=1}^{N_{R}} \sum_{b} x_{i}^{[b] r} \eta_{j}^{[b] r *}, \quad x^{[b] r}=M^{-1} \eta^{[b] r}
$$

Stochastic Quarklines

- Quarklines read:

$$
\mathcal{Q}=\sum_{b} E\left(S M^{-1} V_{s} P^{(b)} \rho\left(V_{s} P^{(b)} \rho\right)^{\dagger}\right)
$$

- Define:

$$
\begin{aligned}
\varphi_{u}^{[b]}(\rho) & =\mathcal{S} M^{-1} V_{s} P^{(b)} \rho \\
\varrho_{v}^{[b]}(\rho) & =V_{s} P^{(b)} \rho
\end{aligned}
$$

- Quarklines now approximable using smeared diluted sources $\varrho^{[b]}(\rho)$ and sinks $\varphi^{[b]}(\rho)$

$$
\mathcal{Q}_{u v}^{A B} \approx \frac{1}{N_{R}} \delta_{A B} \sum_{r=1}^{N_{R}} \sum_{b} \varphi_{u}^{[b]}(\rho) \varrho_{v}^{[b] *}(\rho)
$$

Gerschgorin-circles

$$
\begin{aligned}
& M=\left(\begin{array}{cccc}
-5 & -1 & 0 & 1 \\
0.2 & 8 & 0.2 & 0.2 \\
1 & 1 & 2 & 1 \\
-1 & -1 & -1 & -8
\end{array}\right) \quad \mathrm{EV}=(-7.53,-5.33,1.86,8.00) \\
& S_{1}=(-5,2) ; \quad S_{2}=(8,0.6) ; \quad S_{3}=(2,1.2) ; \quad S_{4}=(-8,2.2)
\end{aligned}
$$

Figure: Gerschgorin-circles corresponding to M

PETSc and SLEPc

- Two libraries specialized for solving large sparse eigenvalue problems
- Numerous algorithms available
- Highly customizable via Shell method for introducing own operations
- Testing lead to Krylov-Schur method with no preconditioning

Time Consumption in s

Figure: Time consumption of solving algorithms

Sourceshape and Lattice Volume

$\Psi(r)$ scales with lattice volume, for same σ factor of $\frac{N_{s 1}^{3}}{N_{s 2}^{3}}$

Figure: Data: Lattice spacing $a=0.086 \mathrm{fm}$

Sourceshape and Lattice Volume

$\Psi(r)$ scales with lattice volume, for same σ factor of $\frac{N_{s 1}^{3}}{N_{s 2}^{3}}$

Figure: Data: Lattice spacing $a=0.086 \mathrm{fm}$

Hypercubic Blocking ${ }^{1}$

1st step

2nd step

- Smoothes gauge field $U_{\mu}(n)$
- Improves eigenspectrum of $\widetilde{\Delta}$
- 3 parameters: "staple weights" α_{1}, α_{2} and iterations n_{i}
${ }^{1}$ A. Hasenfratz, F.Knechtli, Phys. Rev. D64 (2001) 034504

Tuning α_{1} and α_{2}

Figure: scan through the parameter plane (α_{1}, α_{2})
Optimal parameters: $n_{i}=3, \alpha_{1}=0.62, \alpha_{\nu}=0.58 \Rightarrow \lambda_{1}=0.118$
Christopher Helmes

Thermal States

- Total time extent T, Partition function $Z=\operatorname{tr}\left(e^{-H T}\right)$

$$
\left.\langle\mathcal{O}(t) \overline{\mathcal{O}}(0)\rangle=\frac{1}{Z} \sum_{m, n}|\langle n| \mathcal{O}| m\right\rangle\left.\right|^{2} e^{-\left(E_{m}+E_{n}\right) T / 2} \cosh \left(\left(E_{m}-E_{n}\right)(t-T / 2)\right)
$$

- For finite T contributions from $\langle n|=\left\langle\pi^{+}\right|$and $\langle m|=\left\langle\pi^{-}\right|$

$$
\left.\frac{1}{Z}\left|\left\langle\pi^{+}\right| \mathcal{O}_{\pi \pi}\right| \pi^{-}\right\rangle\left.\right|^{2} e^{-m_{\pi} T}
$$

- Comparable to standard contribution at $t=T / 2$

$$
\left.\frac{1}{Z}\left|\left\langle\pi^{+} \pi^{+}\right| \mathcal{O}_{\pi \pi}\right| 0\right\rangle\left.\right|^{2} e^{-E_{\pi \pi}^{l=2} T / 2} \cosh \left(E_{\pi \pi}^{l=2}(t-T / 2)\right)
$$

