The stochastic Laplacian Heaviside Method in twisted mass Lattice QCD - Part 2 η mass and π - π scattering

Christian Jost C. Helmes, B. Knippschild, C. Urbach, M. Werner

March 25, 2014

Outline

1 Motivation

2 Analysis

3 Outlook

Hadron Spectrum in QCD

- Most states in hadron spectrum non-stable resonances
- Scattering amplitude from scattering lengths at low energies
- Non perturbative method: Lattice QCD
- Easiest case: π^+ - π^+ -scattering at p = 0

Scattering at low Energies

- At low energies the precise details of potentials are not important for scattering
- In the partial wave expansion of the scattering process, only the lowest partial waves contribute, here only *s*-wave
- The scattering phase-shift δ_s can be related to the scattering length a_s via

$$\lim_{k\to 0}k\cot(\delta_s(k))=-\frac{1}{a_s}$$

Scattering Length on a Lattice

- Lüscher¹: two particles in a box cause a shift in the energy, due to interaction
- Energy shift δE is related to the scattering length of the particles

$$\delta E = (E - 2m) = -\frac{4\pi a_0}{mL^3} \left\{ 1 + c_1 \frac{A_0}{L} + c_2 \frac{a_0^2}{L^2} \right\} + \mathcal{O}(L^{-6})$$

• Obtain energies E_n from correlation functions

$$C_1^{2-\text{pt}}(t) = \langle \mathcal{O}_1 \overline{\mathcal{O}}_1 \rangle (t) = \sum_n |\langle 0|\mathcal{O}_n \rangle|^2 e^{-E_n t}$$
$$\operatorname{acosh}\left(\frac{C_1^{2-\text{pt}}(t+1) + C_1^{2-\text{pt}}(t-1)}{2C_1^{2-\text{pt}}(t)}\right) = E_{\text{eff}}(t)$$

¹M.Lüscher, Comm. Math. Phys. Volume 105, Number 2 (1986), 153-188.

π - π scattering

- The easiest possible scattering to calculate is π-π scattering with the pions at rest
- Contributions with $I = 2 (\pi^+ \pi^+ \text{ scattering})$ and $I = 0 (\pi^0 \pi^0 \text{ and } \pi^+ \pi^- \text{ scattering})$
- Investigated I = 2, since it has no disconnected contributions
- In total, 4 diagrams contribute

Fierz Rearrangement

• For two particles on the same timeslice, Fierz rearrangement has to be taken into account²

$$\begin{split} &\sum_{\vec{x},\vec{y},a} (\bar{q}(\vec{x},t)^a \Gamma q(\vec{y},t)^a), \ \sum_{\vec{x}',\vec{y}',b} (\bar{q}(\vec{x}',t)^b \Gamma q(\vec{y}',t)^b) \\ &\rightarrow (\bar{q}(\vec{x},t)^a,q(\vec{y}',t)^b), \ (\bar{q}(\vec{x}',t)^a,q(\vec{y},t)^b) \end{split}$$

• To avoid this, place the operators on different timeslices

²M. Fukugita et al, Phys. Rev. D 52 (1995) 3003

Thermal States

• Total time extent T, Partition function $Z = tr(e^{-HT})$

$$C_{\pi\pi}(t) = rac{1}{Z} \sum_{m,n} |\langle n | \mathcal{O} | m \rangle|^2 e^{-(E_m + E_n)T/2} \cosh\left((E_m - E_n)(t - T/2)\right)$$

- For finite T contributions from $\langle n|=\langle\pi^+|$ and $\langle m|=\langle\pi^-|$

$$\frac{1}{Z} \left| \langle \pi^+ | \mathcal{O}_{\pi\pi} | \pi^- \rangle \right|^2 e^{-m_{\pi}T}$$

• Comparable to standard contribution at t = T/2

$$\frac{1}{Z} \left| \langle \pi^+ \pi^+ | \mathcal{O}_{\pi\pi} | 0 \rangle \right|^2 e^{-E_{\pi\pi}^{I=2}T/2} \cosh(E_{\pi\pi}^{I=2}(t-T/2))$$

Thermal States

Removal of Thermal states³

• taking the ratio

$$rac{C_{\pi\pi}(t)}{C_{\pi}^2(t)} \propto \exp(-\delta E_{\pi\pi}^{\prime=2}t)$$

 \rightarrow thermal states do not cancel in the ratio

• use derivative method

$$\begin{aligned} R(t+1/2) &= \frac{C_{\pi\pi}(t) - C_{\pi\pi}(t+1)}{C_{\pi}^2(t) - C_{\pi}^2(t+1)} \\ &= A\left(\cosh(\delta E_{\pi\pi}^{I=2}t') + \sinh(\delta E_{\pi\pi}^{I=2}t') \coth(2m_{\pi}t')\right) \end{aligned}$$

with
$$t' = t + \frac{1}{2} - \frac{T}{2}$$

• extract $\delta E_{\pi\pi}^{I=2}$ by fitting

³X. Feng et al, arxiv:0909.3255 [hep-lat]

Removal of Thermal States

Overview over Ensembles

name	$ L_s $	L _t	<i>r</i> ₀	m_{π}	f_{π}	# conf $ $
A40.20	20	48	5.231	0.14927	0.06198	150
A40.24	24	48	5.231	0.14492	0.06568	202
A40.32	32	64	5.231	0.14142	0.06791	50
A60.24	24	48	5.231	0.17275	0.07169	97
A80.24	24	48	5.231	0.19875	0.07623	100
A100.24	24	48	5.231	0.22293	0.07926	202

overall data

Christian Jost

The LapHS method in tmLQCD - Part 2

Analysis

Volume Effects on the A40 Ensembles

Summary

- Analysed the η and η' on more configurations

- Investigated $\pi^+ \text{-} \pi^+$ scattering and extracted the scattering length

• Good agreement between our new data and older data

• Next order of Lüschers formula has to be investigated

Future Tasks

- Implementing momentum operators
- Investigation of the ρ meson
- Investigation of *D*-*D*^{*} systems
- Investigation of scalar mesons
- advance to larger lattices

Thank you