

Matrix Product States for Lattice Gauge Theories

Krzysztof Cichy NIC, DESY Zeuthen, Germany Adam Mickiewicz University, Poznań, Poland

in collaboration with: Mari Carmen Bañuls (MPQ Garching) J. Ignacio Cirac (MPQ Garching) Karl Jansen (DESY Zeuthen) Hana Saito (Humboldt Universität, DESY Zeuthen)

Krzysztof Cichy

ETMC Meeting Grenoble – 26-28 May 2014 2014 – 1 / 43

Overview

)			\pm	
\cup	ve	erv	'Ie	W

Seminar outline

Introduction

Results

Summary

The talk I will present differs a bit from typical ETMC talks...

	typical ETMC	this talk	
theory	QCD	QED	
dimension	3+1	1 + 1	
fermions	twisted mass	staggered	
formulation	Lagrangian	Hamiltonian	
method	Monte Carlo	tensor networks	

Krzysztof Cichy

ETMC Meeting Grenoble - 26-28 May 2014 2014 - 2 / 43

- 1. Introduction
 - Motivation Lattice QCD
 - Schwinger model
 - Hamiltonian approach
 - ★ strong coupling expansion
 - * Matrix Product States
- 2. Results
 - Ground state energy
 - Vector and scalar mass gap
 - Chiral condensate T = 0
 - Chiral condensate T > 0
- 3. Prospects

Based on:

- K. Cichy, A. Kujawa-Cichy and M. Szyniszewski, "Lattice Hamiltonian approach to the massless Schwinger model: Precise extraction of the mass gap," Comput. Phys. Commun. 184 (2013) 1666, [arXiv:1211.6393 [hep-lat]]
- M. C. Bañuls, K. Cichy, K. Jansen and J. I. Cirac, "The mass spectrum of the Schwinger model with Matrix Product States," JHEP 1311 (2013) 158, [arXiv:1305.3765 [hep-lat]]
- M. C. Bañuls, K. Cichy, J. I. Cirac, K. Jansen and H. Saito, "Matrix Product States for Lattice Field Theories," PoS(LATTICE 2013)332, [arXiv:1310.4118 [hep-lat]]

Lattice QCD

- The most common approach to Lattice QCD simulations consists in sampling the QCD path integral numerically via the Monte Carlo method.
- The QCD path integral: $Z = \int D\bar{\psi}D\psi DU \ e^{-S_{gauge}[U] S_{ferm}[\psi,\bar{\psi},U]}$.
- The fermionic degrees of freedom can be integrated out: $Z = \int DU \ e^{-S_{gauge}[U]} \prod_{f=1}^{N_f} \det(\hat{D}_f[U]),$ where $\det(\hat{D}_f[U])$ is the determinant of the Dirac operator matrix for fermion flavour f.
- The fermionic determinant $\det(\hat{D}_f[U])$ is by far the highest cost in a MC simulation. But, due to γ_5 -Hermiticity $(\gamma_5 \hat{D}_f \gamma_5 = \hat{D}_f^{\dagger})$ it is real, so MC simulations are possible:

$$\det\left(\gamma_5(\hat{D}_f + m)\gamma_5\right) = \det\left(\hat{D}_f^{\dagger} + m\right) = \det\left(\hat{D}_f + m\right)^{\dagger}.$$

- First approximation ⇒ neglect the determinant ("quenched approximation") commonly used until early 2000s.
- Dynamical simulations \Rightarrow take the determinant into account.

Problems of Lattice QCD

LQCD simulations led to spectacular successes. However, there are some areas where progress is hard to achieve:

• non-vanishing chemical potential μ - if $\mu \neq 0$, the determinant becomes complex: $\det \left(\gamma_5(\hat{D}_f + m + \mu\gamma_0)\gamma_5\right) = \det \left(\hat{D}_f^{\dagger} + m - \mu\gamma_0\right) =$ $\det \left(\hat{D}_f + m - \mu^*\gamma_0\right)^{\dagger},$ $\mathsf{K}. Fukushima, T. Hatsuda, Rep. Prog. Phys. 74 (2011) 14001]$ $\det reminant real only if <math>\mu$ taken to be purely imaginary. Ways to tackle the problem: reweighting, Taylor expansion, analytic

Femperature T

sQGP

Critical

continuation from imaginary μ .

• LQCD works in Euclidean space, related to Minkowski space by analytic continuation – hence time is imaginary. Hence, it is not possible to simulate real-time phenomena, i.e. non-equilibrium dynamics.

Alternative approaches wanted for these classes of problems!

Tensor Networks?

Ouark-Gluon Plasma

Road map to QCD with Tensor Networks

Overview Seminar outline Introduction

Lattice QCD

Problems

Road map to QCD with TNS

Schwinger model Hamiltonian approach Tensor Network States

Results

Summary

The way to apply TNS to QCD is a long one.

START: Schwinger model, i.e. an Abelian gauge theory with U(1) gauge group, 1+1 dimensions

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} (i \not\partial - g \notA - m) \psi$$

- NATURAL NEXT STEP: non-Abelian gauge theories (SU(2), SU(3)) in 1+1 dimensions
- AND ALSO: go to 2+1 dimensions
- FINALLY: go to 3+1 dimensions, non-Abelian gauge group SU(3) for QCD

All these next steps non-trivial and challenging.

Overview Seminar outline

Introduction

Lattice QCD

Problems

Road map to QCD with TNS

Schwinger model

Hamiltonian approach Tensor Network

States

Results

Summary

The Schwinger model

The Schwinger model is QED in 1+1 dimensions: [J. S. Schwinger, Phys. Rev. **128** (1962) 2425]

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} (i \not\partial - g \notA - m) \psi$$

where ψ is a 2-component spinor field. The field strength term is:

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}.$$

The coupling g has dimensions of mass (theory super-renormalizable). Using g as the scale of energy, the physical properties of the model are then functions of the dimensionless ratio m/g.

- simplest gauge theory
- but physics still surprisingly rich
- in several aspects resembles much more complex theories (QCD)
- standard toy model for testing lattice techniques

Overview Seminar outline

Introduction

Lattice QCD

Problems Road map to QCD with TNS

Schwinger model

Hamiltonian approach Tensor Network States

Results

Summary

The Schwinger model

[J. S. Schwinger, "Gauge Invariance and Mass. 2.," Phys. Rev. **128** (1962) 2425.] Abstract: The possibility that a vector gauge field can imply a nonzero mass particle is illustrated by the exact solution of a one-dimensional model.

Most prominent feature of the Schwinger model: non-perturbative generation of mass gap!

The mass gap can be calculated analytically: $\frac{M_V}{g} = \frac{1}{\sqrt{\pi}} \approx 0.564189584$. How well can lattice techniques reproduce this number?

- 0.555(25) MC [O. Martin and S. Otto, Nucl. Phys. B **203** (1982) 297]
- 0.560(10) Hamiltonian approach [D. P. Crewther and C. J. Hamer, Nucl. Phys. B 170 (1980) 353]
- 0.565(2) Hamiltonian approach + renormalization of coupling [A. C. Irving and A. Thomas, Nucl. Phys. B **215** (1983) 23]
- 0.56417(2) Hamiltonian approach + renormalization of coupling
 [P. Sriganesh, R. Bursill and C. J. Hamer, Phys. Rev. D 62 (2000) 034508]
- 0.56419(4) Hamiltonian approach + DMRG [T. Byrnes, P. Sriganesh, R. J. Bursill and C. J. Hamer, Phys. Rev. D 66 (2002) 013002]

Krzysztof Cichy

$$\mathcal{L}
ightarrow \mathcal{H}$$

The Hamiltonian \mathcal{H} is the Legendre transform of the Lagrangian \mathcal{L} :

where:

Lattice QCD

Introduction

Seminar outline

Problems

Overview

Road map to QCD

with TNS

Schwinger model

Hamiltonian

approach

Tensor Network States

Results

Summary

 $\mathcal{H} = \pi^{\mu} \dot{A}_{\mu} - \mathcal{L},$ $\pi^{\mu} = \frac{\partial \mathcal{L}}{\partial \dot{A}_{\mu}} = -F^{0\mu}.$

We choose the time like axial gauge $A_0 = 0$:

$$H = \int dx \left(-i\bar{\psi}\gamma^1(\partial_1 + igA_1)\psi + m\bar{\psi}\psi + \frac{1}{2}E^2 \right).$$

The γ matrices:

$$\gamma^0 = \left(\begin{array}{cc} 1 & 0\\ 0 & -1 \end{array}\right), \qquad \gamma^1 = \left(\begin{array}{cc} 0 & 1\\ -1 & 0 \end{array}\right).$$

Going to the lattice:

$$U(n, n+1) = e^{i\theta(n)} = e^{-iagA^{1}(n)}$$

fermionic fields are associated with lattice sites and gauge fields with lattice links

Krzysztof Cichy

ETMC Meeting Grenoble - 26-28 May 2014 2014 - 9 / 43

Overview Seminar outline

Introduction

Lattice QCD

Problems Road map to QCD

with TNS

Schwinger model

Hamiltonian

approach

Tensor Network States

Results

Summary

The Hamiltonian becomes:

H

$$= -\frac{i}{2a} \sum_{n=0}^{M-1} \left(\phi^{\dagger}(n) e^{i\theta(n)} \phi(n+1) - \phi^{\dagger}(n+1) e^{-i\theta(n)} \phi(n) \right) + \\ + m \sum_{n=0}^{M-1} (-1)^{n} \phi^{\dagger}(n) \phi(n) + \frac{ag^{2}}{2} \sum_{n=0}^{M-1} L^{2}(n),$$

in the Kogut-Susskind discretization: [T. Banks, L. Susskind and J. B. Kogut, Phys. Rev. D 13 (1976) 1043] [J. B. Kogut and L. Susskind, Phys. Rev. D 11 (1975) 395.]

$$\phi(n)/\sqrt{a}
ightarrow \left\{ egin{array}{cc} \psi_{ extsf{upper}}(x) & n extsf{ even} \ \psi_{ extsf{lower}}(x) & n extsf{ odd} \end{array}
ight.$$

The correspondence between lattice and continuum fields is:

$$\frac{1}{ag}\theta(n) \rightarrow -A^{1}(x)$$
$$gL(n) \rightarrow E(x).$$

ETMC Meeting Grenoble - 26-28 May 2014 2014 - 10 / 43

Krzysztof Cichy

Overview

Seminar outline

Road map to QCD

Schwinger model

Tensor Network

Introduction Lattice QCD

Problems

with TNS

Hamiltonian

approach

States

Results

Summary

Basic ingredients

- φ(n) is a single-component fermion field, defined on each site of a M-site lattice with periodic b.c. and obeying the anticomm. relations: {φ[†](n), φ(m)} = δ_{nm}, {φ(n), φ(m)} = 0, {φ[†](n), φ[†](m)} = 0
- The gauge field variable $\theta(n)$ is defined on the link between sites *n* and n + 1 and is related to the spatial component of the Abelian vector potential by $\theta(n) = agA(n)$
- The angular momentum variable L(n) is related to the electric field E(n) by the relation L(n) = E(n)/g and to the gauge field by the commutation relations: $[\theta(n), L(m)] = i\delta_{nm}$. The possible values of L(n) are quantized: $L(n)|l\rangle = l|l\rangle$, $l = 0, \pm 1, \pm 2, \ldots$ This implies: $e^{\pm i\theta(n)}|l\rangle = |l \pm 1\rangle$
- m fermion mass
- g gauge coupling
- a lattice spacing
- M lattice size

Overview Seminar outline

Introduction

Lattice QCD

Problems

Road map to QCD with TNS

Schwinger model

Hamiltonian

approach

Tensor Network States

Results

Summary

Jordan-Wigner transformation

n=0

$$H = -\frac{i}{2a} \sum_{n=0}^{M-1} \left(\phi^{\dagger}(n) e^{i\theta(n)} \phi(n+1) - \phi^{\dagger}(n+1) e^{-i\theta(n)} \phi(n) \right) + \\ + m \sum_{n=0}^{M-1} (-1)^{n} \phi^{\dagger}(n) \phi(n) + \frac{ag^{2}}{2} \sum_{n=0}^{M-1} L^{2}(n),$$

For numerics, it is convenient to perform the Jordan-Wigner transformation: [P. Jordan, E. Wigner, Z. Phys. 47 (1928) 631.]

n=0

$$\begin{split} \phi(n) &= \prod_{p < n} (i\sigma^3(p))\sigma^-(n), \\ \text{where } \sigma^i(n) \text{ are Pauli matrices } (\sigma^\pm = \sigma^1 \pm i\sigma^2). \text{ This gives:} \\ H &= -\frac{1}{2a} \sum_{n=0}^{M-1} \left(\sigma^+(n)e^{i\theta(n)}\sigma^-(n+1) + \sigma^+(n+1)e^{-i\theta(n)}\sigma^-(n) \right) + \\ &\quad + \frac{m}{2} \sum_{n=0}^{M-1} \left(1 + (-1)^n\sigma^3(n) \right) + \frac{ag^2}{2} \sum_{n=0}^{M-1} L^2(n). \end{split}$$

ETMC Meeting Grenoble – 26-28 May 2014 2014 – 12 / 43

Krzysztof Cichy

Choice of basis

Rewrite Hamiltonian in a dimensionless form: $W = \frac{2}{aq^2}H_{\rm JW} = W_0 - xV$, with:

$$W_{0} = \frac{m}{ag^{2}} \sum_{n=0}^{M-1} \left(1 + (-1)^{n} \sigma^{3}(n) \right) + \sum_{n=0}^{M-1} L^{2}(n),$$
$$V = \sum_{n=0}^{M-1} \left(\sigma^{+}(n) e^{i\theta(n)} \sigma^{-}(n+1) + \sigma^{+}(n+1) e^{-i\theta(n)} \sigma^{-}(n) \right)$$
$$x \equiv \beta = 1/a^{2}g^{2}.$$

• Natural choice of basis: direct product of Ising basis $\{|i\rangle\}$, acted upon by Pauli spin operators, and the ladder space of states $\{|l\rangle\}$:

 $|i_0i_1\ldots i_{M-2}i_{M-1}\rangle \otimes |l_{0,1}l_{1,2}\ldots l_{M-2,M-1}(l_{M-1,0})\rangle,$

where $(l_{M-1,0})$ is present if PBC are considered and absent for OBC.

- Formally, the operator W_0 can be treated as an unperturbed part and V as a perturbation. Ground state of W_0 : $|0\rangle = |\downarrow\uparrow\downarrow\uparrow\ldots\downarrow\uparrow\rangle\otimes|0000\ldots00\rangle$,
- The perturbation operator V flips two neighbouring spins and couples them via a gauge field excitation (flux line): V | | ↑→↓>

Krzysztof Cichy

Choice of basis

• The gauge degrees of freedom $l_{i,i+1}$ can be eliminated using the Gauss law:

$$L_n - L_{n-1} = \frac{1}{2} \left(\sigma_n^z + (-1)^n \right),$$

leaving the basis states as:

$$|i_0i_1\ldots i_{M-2}i_{M-1}\rangle\otimes|l\rangle,$$

with:

- \star $l=0,\pm 1,\pm 2,\ldots$ for PBC,
- * l = 0 (or other constant) for OBC.
- With M-site lattice, dim(spin part)= 2^{M} , while for the gauge part the basis is
 - \star infinite-dimensional for PBC \Rightarrow truncation needed,
 - \star one-dimensional for OBC.
- Truncation for PBC:
 - \star at some finite $\pm l_{\max}$, thus reducing the basis to dimension $(2l_{\max}+1)2^M$,
 - \star or use strong coupling expansion (SCE):

[T. Banks, L. Susskind and J. B. Kogut, Phys. Rev. D 13 (1976) 1043]

[J. B. Kogut and L. Susskind, Phys. Rev. D 11 (1975) 395.]

Tensor Network States

Overview Seminar outline

Introduction

Lattice QCD

Problems Road map to QCD

with TNS

Schwinger model Hamiltonian

approach

Tensor Network States

Results

Summary

- An arbitrary state from a Hilbert space of an *N*-body interacting system needs in general an exponential number of coefficients – thus computational complexity increases very fast and prohibits exact diagonalization of systems larger than e.g.:
 - \star $\mathcal{O}(20)$ Heisenberg spins (with a naive approach) or
 - \star $\mathcal{O}(40)$ Heisenberg spins (using symmetries etc.).
- However, physical states (ground states, thermal states) of most systems are far from arbitrary.
- In many cases, they can be described by Tensor Network states that have only a polynomial number of parameters.
- In other words, only a small "corner" of the Hilbert space is physically relevant.

- A particularly successful and efficient family of Tensor Network states is called Matrix Product States (MPS).
- The MPS ansatz for some state $|\Psi
 angle$ has the following form:

$$|\Psi\rangle = \sum_{i_0\dots i_{N-1}=1}^{d} \operatorname{tr}\left(A_0^{i_0}\dots A_{N-1}^{i_{N-1}}\right)|i_0\dots i_{N-1}\rangle,$$

 A_k

where:

 $|i_k\rangle$ are individual basis states for each site (k = 0, ..., d - 1), d – dimension of one-site Hilbert space, each A_j^i is a *D*-dimensional matrix $|\Psi\rangle$

and D is called the bond dimension.

- The ground state can be found variationally by successively minimizing the energy $\frac{\langle \Psi | H | \Psi \rangle}{\langle \Psi | \Psi \rangle}$ with respect to each tensor A_j until convergence is achieved.
- Having the ground state, one can find ground state expectation values of any operator of interest.

 $\langle \Psi | \Psi \rangle$

Excited states

- After having found the ground state of the system, $|\Psi_0\rangle$, we can construct the projector onto the orthogonal subspace, $\Pi_0 = 1 |\Psi_0\rangle\langle\Psi_0|$.
- The projected Hamiltonian, $\Pi_0 H \Pi_0$, has $|\Psi_0\rangle$ as eigenstate with zero eigenvalue, and the first excited state as eigenstate with energy E_1 .
- Given that $E_1 < 0$, what we can always ensure by adding an appropriate constant to H, the first excitation corresponds then to the state that minimizes the energy of the projected Hamiltonian:

$$E_{1} = \min_{|\Psi\rangle} \frac{\langle \Psi | \Pi_{0} H \Pi_{0} | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \frac{\langle \Psi | (H - E_{0} | \Psi_{0} \rangle \langle \Psi_{0} |) | \Psi \rangle}{\langle \Psi | \Psi \rangle}$$

- This minimization corresponds to finding the ground state of the effective Hamiltonian $H_{\text{eff}}[1] = \Pi_0 H \Pi_0$.
- The procedure can be concatenated to find subsequent energy levels, so that, to find the M-th excited state, we will search for the ground state of the Hamiltonian: M-1

$$H_{\text{eff}}[M] = \Pi_{M-1} \dots \Pi_0 H \Pi_0 \dots \Pi_{M-1} = H - \sum_{k=0} E_k |\Psi_k\rangle \langle \Psi_k|.$$

Krzysztof Cichy

ETMC Meeting Grenoble – 26-28 May 2014 2014 – 17 / 43

Earlier works

Overview Seminar outline

Introduction

Lattice QCD

Problems Road map to QCD

with TNS

Schwinger model Hamiltonian approach

Tensor Network States

Results

Summary

Density Matrix Renormalization Group approach:

- T. Byrnes, P. Sriganesh, R. J. Bursill and C. J. Hamer, "Density matrix renormalization group approach to the massive Schwinger model," PRD 66 (2002) 013002, [hep-lat/0202014].
- T. Sugihara, "Density matrix renormalization group in a two-dimensional $\lambda \phi^4$ Hamiltonian lattice model," JHEP 0405 (2004) 007, [hep-lat/0403008]

Matrix Product States approach:

- T. Sugihara, "Matrix product representation of gauge invariant states in a Z(2) lattice gauge theory," JHEP 0507 (2005) 022, [hep-lat/0506009]
- A. Milsted, J. Haegeman and T. J. Osborne, "Matrix product states and variational methods applied to critical quantum field theory," ($\lambda \phi^4$ theory) arXiv:1302.5582 [hep-lat]

Overview Seminar outline

Introduction

Results

SCE+ED

MPS

GS energy

Excited states

Dispersion relation

Mass gaps

Chiral condensate

Some result

Continuum limit

Summary

Results

Krzysztof Cichy

ETMC Meeting Grenoble - 26-28 May 2014 2014 - 19 / 43

SCE+ED, infinite volume extrapolation

Krzysztof Cichy

ETMC Meeting Grenoble – 26-28 May 2014 2014 – 20 / 43

SCE+ED, infinite volume extrapolation

Krzysztof Cichy

ETMC Meeting Grenoble – 26-28 May 2014 2014 – 21 / 43

SCE+ED, continuum extrapolation

 $F_0(ag) = F_{00} + F_{01} \cdot ag + F_{02} \cdot (ag)^2$

Krzysztof Cichy

ETMC Meeting Grenoble - 26-28 May 2014 2014 - 22 / 43

SCE+ED, comparison with literature

	M_S/g		M_V/g	
	result	error	result	error
exact	1.12837916710	_	0.5641895836	_
this work	1.12837916719	$8 \cdot 10^{-9}$ %	0.5641895845	$1.8 \cdot 10^{-7}$ %
[Crewther, Hamer 1980]	1.120	0.7%	0.560	0.7%
[Irving, Thomas 1982]	1.128	0.03%	0.565	0.1%
[Hamer et al. 1997] (I)	1.25	11%	0.56	0.7%
[Hamer et al. 1997] ()	1.14	1%	0.57	1%
[Sriganesh et al. 1999] ()	1.11	1.6%	0.563	0.2%
[Sriganesh et al. 1999] (II)	1.1284	0.002%	0.56417	0.003%
[Byrnes et al. 2002]	_	_	0.56419	$7 \cdot 10^{-5}$ %

Matrix Product States

Overview Seminar outline

Introduction

Results

SCE+ED

MPS

GS energy Excited states Dispersion relation Mass gaps Chiral condensate

Some result

Continuum limit

Summary

We want to find:

- ground state energy
- vector mass gap
- scalar mass gap

for selected values of the fermion mass m/g = 0, 0.125, 0.25, 0.5.

Simulate with finite D (bond dimension), N (system size), x (inverse lattice spacing). We want:

- large enough D check $D \in [20, 140]$,
- $N \to \infty$ choose $N \in [100, 850]$ (note that $N \propto x$),
- $x \to \infty$ choose $x \in [5, 600]$.

GS energy. Bond dimension

Krzysztof Cichy

ETMC Meeting Grenoble - 26-28 May 2014 2014 - 25 / 43

GS energy. Finite size scaling

Krzysztof Cichy

ETMC Meeting Grenoble - 26-28 May 2014 2014 - 26 / 43

GS energy. Continuum extrapolation

Krzysztof Cichy

ETMC Meeting Grenoble - 26-28 May 2014 2014 - 27 / 43

Computing the mass gap

Overview Seminar outline

Introduction

Results

SCE+ED

MPS

- GS energy
- Excited states

Dispersion relation Mass gaps Chiral condensate Some result Continuum limit

Summary

- After having computed the GS energy, we want to compute the masses of the two lightest bound states ("mesons") of the theory:
 - \star vector meson,
 - \star scalar meson.
- Important: we have to recognize the vector and scalar states use the charge conjugation transformation:
 - $\star \quad \mathsf{PBC} C = -1 \Rightarrow \mathsf{vector \ state}, \ C = +1 \Rightarrow \mathsf{scalar \ state},$
 - * OBC C no longer an exact symmetry, but "enough" to differentiate vector vs. scalar.
- Note: with OBC translational symmetry is lost hence we also have momentum excitations of the vector meson *before* we reach the scalar.

Dispersion relation

Krzysztof Cichy

ETMC Meeting Grenoble – 26-28 May 2014 2014 – 29 / 43

Results for the mass gaps, m/g = 0

Krzysztof Cichy

ETMC Meeting Grenoble - 26-28 May 2014 2014 - 30 / 43

Results for the mass gaps, m/g = 0.125

Krzysztof Cichy

ETMC Meeting Grenoble - 26-28 May 2014 2014 - 31 / 43

	Vector binding energy			Scalar binding energy	
	exact 0.5641895			exact 1.12838	
m/g	MPS with OBC	DMRG result	m/g	MPS with OBC	SCE result
0	0.56421(9)	0.56419(4)	0	1.1279(12)	1.11(3)
0.125	0.53953(5)	0.53950(7)	0.125	1.2155(28)	1.22(2)
0.25	0.51922(5)	0.51918(5)	0.25	1.2239(22)	1.24(3)
0.5	0.48749(3)	0.48747(2)	0.5	1.1998(17)	1.20(3)

DMRG result:

[T. Byrnes, P. Sriganesh, R. J. Bursill and C. J. Hamer, Phys. Rev. D **66** (2002) 013002] SCE result:

[P. Sriganesh, R. Bursill and C. J. Hamer, Phys. Rev. D 62 (2000) 034508]

Overview Seminar outline

Introduction

Results

SCE+ED

MPS

GS energy

Excited states

Dispersion relation

Mass gaps

Chiral condensate

Some result

Continuum limit

Summary

Chiral condensate

- The Schwinger model posesses a $U(1)_A$ chiral symmetry, which is broken by the chiral anomaly.
- This symmetry breaking is signaled by a non-zero value of the chiral condensate:

$$\Sigma = \frac{\sqrt{x}}{N} \sum_{n} (-1)^n \frac{1 + \sigma_n^z}{2}$$

- \longrightarrow compute GS expectation value of Σ .
- The naively computed condensate has a logarithmic divergence $\propto \frac{m}{g} \log ag$. This divergence can be subtracted off by subtracting the free theory contribution (in the infinite volume limit):

$$\Sigma_{\text{free}}^{(\text{bulk})}(m/g, x) = \frac{m}{\pi g} \frac{1}{\sqrt{1 + \frac{m^2}{g^2 x}}} \mathbf{K}\left(\frac{1}{1 + \frac{m^2}{g^2 x}}\right),$$

where K(u) is the complete elliptic integral of the first kind.

Krzysztof Cichy

Results for the chiral condensate

Krzysztof Cichy

ETMC Meeting Grenoble - 26-28 May 2014 2014 - 34 / 43

Overview

Seminar outline Introduction Results SCE+ED MPS GS energy Excited states Dispersion relation Mass gaps Chiral condensate Some result Continuum limit

Summary

	Substracted condensate				
m/g	MPS with OBC exact Hosotan				
0	0.159930(8)	0.159929	-		
0.125	0.092023(4)	-	0.0918		
0.25	0.066660(11)	-	_		
0.5	0.042383(22)	-	_		

Exact result: $\frac{\Sigma}{q} = \frac{1}{2\pi^{3/2}}e^{\gamma_E} \approx 0.1599288.$

Hosotani (reduction to a quantum mechanics problem and numerical solution of the resulting Schrödinger equation):

[Y. Hosotani, "Chiral dynamics in weak, intermediate, and strong coupling QED in two-dimensions," In: Nagoya 1996, Perspectives of strong coupling gauge theories, 390-397 [hep-th/9703153].]

Chiral condensate at finite temperature

Overview Seminar outline

Introduction

Results

SCE+ED

MPS

GS energy

Excited states

Dispersion relation

Mass gaps

Chiral condensate

Some result

Continuum limit

Summary

Analytic prediction for the behaviour of the condensate at finite T: [I. Sachs, A. Wipf, "Finite Temperature Schwinger Model," Helv. Phys. Acta 65, 652 (1992), arXiv:1005.1822 [hep-th]]

$$\frac{\Sigma}{g} = \frac{1}{2\pi^{3/2}} e^{\gamma_E} e^{2I\left(\frac{g}{\sqrt{\pi}T}\right)},$$

where:
$$I(x) = \int_0^\infty dt \ (1 - e^{x \cosh(t)})^{-1}).$$

Krzysztof Cichy

ETMC Meeting Grenoble - 26-28 May 2014 2014 - 36 / 43

Idea of the computation

Given some operator \mathcal{O} , we want to calculate its thermal expectation value: $\langle \mathcal{O} \rangle_{\beta} = \frac{\operatorname{Tr} \left(\mathcal{O} \rho(\beta) \right)}{\operatorname{Tr} \left(\rho(\beta) \right)},$

Introduction

Seminar outline

Results

Overview

SCE+ED

MPS

GS energy

Excited states

Dispersion relation

Mass gaps

Chiral condensate

Some result

Continuum limit

Summary

where $\beta = 1/T$, $\rho(\beta)$ is the thermal density operator.

• $\rho(\beta) = \rho(\beta/2)^{\dagger} \rho(\beta/2)$ to ensure positivity

2nd order Trotter expansion:

• divide the interval $\beta/2$ into $N = \beta/\delta$ steps of length $\delta/2$:

$$\rho(\beta/2) = \underbrace{e^{-\frac{\delta}{2}H} \dots e^{-\frac{\delta}{2}H}}_{\text{I}}$$

 $e^{-\frac{\delta}{2}H} \approx e^{-\frac{\delta}{4}H_g} \underbrace{e^{-\frac{\delta}{2}(H_{hop}+H_{mass})}}_{e^{-\frac{\delta}{4}H_g}} e^{-\frac{\delta}{4}H_g},$

 $N{=}eta/\delta$ times

 $\approx e^{-\frac{\delta}{4}H_e}e^{-\frac{\delta}{2}H_o}e^{-\frac{\delta}{4}H_e}$ H_e/H_o – on even/odd sites

where:

$$H = x \sum_{n=0}^{N-2} \left(\sigma_n^+ e^{i\theta_n} \sigma_{n+1}^- + H.c. \right) + \mu \sum_{n=0}^{N-1} \left(1 + (-1)^n \sigma_n^3 \right) + \sum_{n=0}^{N-2} \left(l + \frac{1}{2} \sum_{k=0}^n \left((-1)^k + \sigma_k^3 \right) \right)^2 + \frac{1}{H_{hop}} H_{mass}$$

Krzysztof Cichy

ETMC Meeting Grenoble - 26-28 May 2014 2014 - 37 / 43

Influence of D and δ

Krzysztof Cichy

ETMC Meeting Grenoble – 26-28 May 2014 2014 – 38 / 43

Zoom into high and low T

Krzysztof Cichy

ETMC Meeting Grenoble - 26-28 May 2014 2014 - 39 / 43

Towards the continuum limit

Krzysztof Cichy

ETMC Meeting Grenoble - 26-28 May 2014 2014 - 40 / 43

Infinite volume and continuum limits at $g\beta = 0.2$

analytic result at $g\beta = 0.2$ [I. Sachs, A. Wipf, 1992]: $\frac{\Sigma}{q} \approx 8.1 \cdot 10^{-12}$

Krzysztof Cichy

ETMC Meeting Grenoble - 26-28 May 2014 2014 - 41 / 43

Conclusions

Overview Seminar outline

Introduction

Results

Summary

Conclusions

Prospects

- Proof of concept the MPS approach can be used to extract:
 - mass spectrum (GS energy, masses of lightest particles of a theory),
 - * ground state expectation values (chiral condensate).
- Precision better or comparable to best results in the literature, in some cases better than 0.01%.
- The success of our work so far encourages to look in more detail into the use of Tensor Network methods in lattice gauge theories.

Prospects

- We would like to look into aspects of lattice gauge theories where the standard methods have problems:
 - thermodynamics at non-zero chemical potential,
 - * non-equilibrium properties.

- [K. Fukushima, T. Hatsuda, Rep. Prog. Phys. 74 (2011) 14001]
- First attempts already underway: computation of the chiral condensate at finite temperature.
- Ultimate aim: full QCD , i.e.:
 - \star a non-Abelian theory (with SU(3) gauge group),
 - \star in **3+1** dimensions.
- Needs a lot of work of the Tensor Network + lattice gauge theory community...

Krzysztof Cichy

Overview Seminar outline

Introduction

Results

Summary

Thank you for your attention!

Thank you for your attention!

Krzysztof Cichy

ETMC Meeting Grenoble - 26-28 May 2014 2014 - 44 / 43