$N_f = 2 + 1 + 1$ twisted mass + clover towards the physical point?

A. Abdel-Rehim, P. Dimopoulos, R. Frezzotti,K. Jansen, B. Kostrzewa, M. Mangin-Brinet,G.C. Rossi, C. Urbach, U. Wenger

ETMC Meeting Grenoble, May 2014

 $N_f = 2 + 1 + 1$ @ phys. point

Finding β , κ_c

- Did simulation $N_f = 2 + 2$, $\mu_I = 0.003$, $\mu_h = 0.025$, L = 24
- *a* ~ 0.095fm
- Use η_{ss} and D_s mass ratio to tune heavy sector → Osterwalder-Seiler
 μ_s ∈ [0.015; 0.035], μ_c ∈ [0.16; 0.38]
- Estimate $Z_P/Z_S \rightarrow$ non-degenerate inversions on $N_f = 2 + 2$ background \rightarrow tune μ_{δ} to match μ_c

Tuning $\mu_{\sigma} \& \mu_{\delta}$

(M_ss/M_sc)^2

amus

Tuning $\mu_{\sigma} \& \mu_{\delta}$

- Realized: η_{ss}, D_s suffer from cut-off artefacts
 - use $\mu_c/\mu_s \sim 11.8$ and match m_{D_s}/f_{D_s} instead
 - Determined $\mu_s = 0.021, \mu_c = 0.25$

$$\Rightarrow~\mu_{\sigma}=$$
 0.1355, $\mu_{\delta}=$ 0.145

• So $Z_P/Z_S \sim 0.8$

- Had estimate: $\kappa_c \sim 0.137$ from $N_f = 2 + 2$ $\Rightarrow N_f = 2 + 1 + 1$ runs with $\mu_I = 0.003$, $\kappa \sim 0.1388$ to tune kappa
- ! Simulations suffer from bad acceptance, large δH !

Simulations expensive and unstable!

histogram iwa_b1.7-L24T48-csw1.85-k0.138845-mul0.003-musigma0.1355-mudelta0.145

- very large δH despite many integration steps
- low acceptance, high cost!

Simulations expensive and unstable!

histogram iwa_b1.7-L48T96-csw1.85-k0.13882-mul0.00085-musigma0.1355-mudelta0.145

$N_f = 2 + 1 + 1$ simulations Old $N_f = 2 + 1 + 1$ (B75)

histogram L32T64_b1.95_k0.161232_mu0.0075_mubar0.135_eps0.17

- B75 also had sizeable δH (but still smaller)
- ullet ~ factor 4 lower cost
- more lattice points (although physical volume similar)
- higher acceptance

$N_f = 2 + 1 + 1$ simulations Old $N_f = 2 + 1 + 1$ (A100)

So where is the δH coming from?

Possible sources of large δH

- Bug in ND doublet + clover?
 - > PHMC and RHMC without clover well-tested
 - PHMC/RHMC + clover tested to give same results
 - $\,\,$ stability regained for $\mu_{\delta} << 1$
 - \Rightarrow can exclude bugs
- "Phase transitions"?
 - No hysteresis in k thermal cycle
- Mistuning of heavy sector?
 - Once we have pinned down κ_c, do ND inversions for Kaon and D_s meson masses
 - ▶ in any case, certainly less than 10% effect
- Lattice artefacts from heavy sector?
 - reducing μ_c while keeping μ_s constant seems to really help
- Eigenvalue fluctuations in heavy sector?

$N_f = 2 + 1 + 1$ simulations $N_f = 2 + 1 + 1 + \text{clover thermal cycle}$

\Rightarrow no sign of "phase transition"

Eigenvalue fluctuations?

This is what eigenvalue fluctuations looked like for old A100 ensemble:

Eigenvalue fluctuations?

This is what they look like now:

Large fluctuations in maximum eigenvalue, need to have very large interval!

$N_f = 2 + 1 + 1$ simulations $N_f = 2 + 1 + 1 + 1 = 0.003, \mu_c \rightarrow 0.13, \mu_\sigma \rightarrow 0.076, \mu_\delta \rightarrow 0.069$

histogram iwa_b1.7-L24T48-csw1.85-k0.1388-mul0.003-musigma0.076-mudelta0.069

Eigenvalue fluctuations?

For reduced μ_c , eigenvalues look similar:

Fluctuations are comparable to problematic run... so where are the problems coming from?!

B. Kostrzewa (bartosz.kostrzewa@desy.de)

 $N_f = 2 + 1 + 1$ @ phys. point

Where to go from here?

It is known that simulations can become difficult if forces /eigenvalues fluctuate strongly.

Sources for eigenvalue / force fluctuations

• Problems in light quark mass regime excluded

- indications for small pion mass splitting, no hysteresis despite coarse lattice spacing
- Does RHMC/PHMC have problems with μ_c + clover?
 ▶ Check with N_f = 2 + 2 simulation, 2 light, 2 charm
- If no problem, perhaps action has a problem with µ_c + clover?
 in ⟨Q² ⟨Q⟩²⟩ spectral decomposition, maybe terms of the form ~ c²_{SW}µ²_c problematic? This is potentially large! [certainly of O(1)]
 Would explain improvement for c_{SW} → 0, µ_c → 0