Renormalization constants for $N_{\mathrm{f}}=2+1+1$ twisted mass QCD

Savvas Zafeiropoulos

Laboratoire de Physique Corpusculaire Université Blaise Pascal, CNRS/IN2P3

May 26-28 2014
LPSC Grenoble

Acknowledgements

To my collaborators: Benoit Blossier, Mariane Brinet, Pierre Guichon, Vincent Morenas, Olivier Péne, Pepe Rodríguez-Quintero and to Tassos Vladikas for fruitful discussions

Outline

- Motivation
- RI'-MOM scheme-generalities
- RCs
- Conclusions and Outlook

Bare vs Renormalized

- Lattice formalism is bare QFT
- One computes bare matrix elements of operators at fixed cutoff
- Must renormalize to obtain continuum Physics
- $O_{R}=Z_{O} O_{b}$
- Renormalization can be done perturbatively or non-perturbatively

Bare vs Renormalized

- Lattice formalism is bare QFT
- One computes bare matrix elements of operators at fixed cutoff
- Must renormalize to obtain continuum Physics
- $O_{R}=Z_{O} O_{b}$
- Renormalization can be done perturbatively or non-perturbatively

Bare vs Renormalized

- Lattice formalism is bare QFT
- One computes bare matrix elements of operators at fixed cutoff
- Must renormalize to obtain continuum Physics
- $O_{R}=Z_{O} O_{b}$
- Renormalization can be done perturbatively or non-perturbatively

Bare vs Renormalized

■ Lattice formalism is bare QFT

- One computes bare matrix elements of operators at fixed cutoff
- Must renormalize to obtain continuum Physics
- $O_{R}=Z_{O} O_{b}$
- Renormalization can be done perturbatively or non-perturbatively
- Lattice PT-notorious for its bad convergence
- MILC collaboration found that m_{s} was raised by 14% once its renormalization constant (RC) known in 1-loop PT was calculated @ 2-loops.
- Göckeler et al found that m_{s} was raised by 24% once its RC known in 1-loop PT was calculated non-perturbatively.

Lattice PT

- Lattice PT-notorious for its bad convergence
- MILC collaboration found that m_{s} was raised by 14% once its renormalization constant (RC) known in 1-loop PT was calculated @ 2-loops.
- Göckeler et al found that m_{s} was raised by 24% once its RC known in 1-loop PT was calculated non-perturbatively.

Lattice PT

- Lattice PT-notorious for its bad convergence
- MILC collaboration found that m_{s} was raised by 14% once its renormalization constant (RC) known in 1-loop PT was calculated @ 2-loops.
■ Göckeler et al found that m_{s} was raised by 24% once its RC known in 1-loop PT was calculated non-perturbatively.

Non-Perturbative Renormalization

■ RI-MOM scheme Martinelli et al (1995)

- Work on the calculation of the RCs by many groups many of them belonging to the ETMC

Göckeler et al (1998), Constantinou et al (2009-2012), Dimopoulos et al (2011), Blossier et al (2011)

- Schrödinger Functional scheme

Non-Perturbative Renormalization

■ RI-MOM scheme Martinelli et al (1995)

- Work on the calculation of the RCs by many groups many of them belonging to the ETMC

Göckeler et al (1998), Constantinou et al (2009-2012), Dimopoulos et al (2011), Blossier et al (2011)

- Schrödinger Functional scheme Lüscher et al (1996)
- focus on local fermion bilinears $O_{\Gamma}=\bar{\psi}(x) \Gamma \psi(x)$

Vladikas Les Houches lectures

- Γ can be any Dirac structure and can even potentially contain covariant derivatives
- inserting O_{Γ} in the fermion 2-pt function

- the amputated Green's function

- focus on local fermion bilinears $O_{\Gamma}=\bar{\psi}(x) \Gamma \psi(x)$

Vladikas Les Houches lectures

- Γ can be any Dirac structure and can even potentially contain covariant derivatives
- inserting O_{Γ} in the fermion 2-pt function
- $G_{O}=\left\langle u\left(x_{1}\right) O_{\Gamma} \bar{d}\left(x_{2}\right)\right\rangle$
- the amputated Green's function

- $\Gamma_{O}(p)=\frac{1}{12} \operatorname{tr}\left[P_{O} \Lambda_{O}(p, p)\right]$

- focus on local fermion bilinears $O_{\Gamma}=\bar{\psi}(x) \Gamma \psi(x)$

Vladikas Les Houches lectures

- Γ can be any Dirac structure and can even potentially contain covariant derivatives
- inserting O_{Γ} in the fermion 2-pt function
- $G_{O}=\left\langle u\left(x_{1}\right) O_{\Gamma} \bar{d}\left(x_{2}\right)\right\rangle$
- the amputated Green's function
- $\Lambda_{O}\left(p_{1}, p_{2}\right)=S_{u}^{-1}\left(P_{1}\right) G_{O}\left(p_{1}, p_{2}\right) S_{d}^{-1}\left(p_{2}\right)$
- $\Gamma_{O}(p)=\frac{1}{12} \operatorname{tr}\left[P_{O} \Lambda_{O}(p, p)\right]$

- focus on local fermion bilinears $O_{\Gamma}=\bar{\psi}(x) \Gamma \psi(x)$

Vladikas Les Houches lectures

- Γ can be any Dirac structure and can even potentially contain covariant derivatives
- inserting O_{Γ} in the fermion 2-pt function
- $G_{O}=\left\langle u\left(x_{1}\right) O_{\Gamma} \bar{d}\left(x_{2}\right)\right\rangle$
- the amputated Green's function
- $\Lambda_{O}\left(p_{1}, p_{2}\right)=S_{u}^{-1}\left(P_{1}\right) G_{O}\left(p_{1}, p_{2}\right) S_{d}^{-1}\left(p_{2}\right)$
- $\Gamma_{O}(p)=\frac{1}{12} \operatorname{tr}\left[P_{O} \Lambda_{O}(p, p)\right]$

- focus on local fermion bilinears $O_{\Gamma}=\bar{\psi}(x) \Gamma \psi(x)$

Vladikas Les Houches lectures

- Γ can be any Dirac structure and can even potentially contain covariant derivatives
- inserting O_{Γ} in the fermion 2-pt function
- $G_{O}=\left\langle u\left(x_{1}\right) O_{\Gamma} \bar{d}\left(x_{2}\right)\right\rangle$
- the amputated Green's function
- $\Lambda_{O}\left(p_{1}, p_{2}\right)=S_{u}^{-1}\left(P_{1}\right) G_{O}\left(p_{1}, p_{2}\right) S_{d}^{-1}\left(p_{2}\right)$
- $\Gamma_{O}(p)=\frac{1}{12} \operatorname{tr}\left[P_{O} \Lambda_{O}(p, p)\right]$
- $\Gamma_{O}(p)_{R}=\lim _{a \rightarrow 0} Z_{q}^{-1} Z_{O} \Gamma_{O}(p)$
- focus on local fermion bilinears $O_{\Gamma}=\bar{\psi}(x) \Gamma \psi(x)$

Vladikas Les Houches lectures

- Γ can be any Dirac structure and can even potentially contain covariant derivatives
- inserting O_{Γ} in the fermion 2-pt function
- $G_{O}=\left\langle u\left(x_{1}\right) O_{\Gamma} \bar{d}\left(x_{2}\right)\right\rangle$
- the amputated Green's function
- $\Lambda_{O}\left(p_{1}, p_{2}\right)=S_{u}^{-1}\left(P_{1}\right) G_{O}\left(p_{1}, p_{2}\right) S_{d}^{-1}\left(p_{2}\right)$
- $\Gamma_{O}(p)=\frac{1}{12} \operatorname{tr}\left[P_{O} \Lambda_{O}(p, p)\right]$
- $\Gamma_{O}(p)_{R}=\lim _{a \rightarrow 0} Z_{q}^{-1} Z_{O} \Gamma_{O}(p)$
- $Z_{q}\left(\mu^{2}=p^{2}\right)=-\frac{i}{12 p^{2}} \operatorname{tr}\left[S_{\text {bare }}^{-1}(p) \not p\right]$
- impose that the amputated Green's function in the chiral limit © a large Euclidean scale $p^{2}=\mu^{2}$ is equal to its tree level value
- $\Gamma_{O}(p)_{R}\left(\mu, g_{R}, m_{R}=0\right)=$

$$
\lim _{a \rightarrow 0}\left[Z_{q}^{-1}\left(a \mu, g_{0}\right) Z_{O}\left(a \mu, g_{0}\right) \Gamma_{O}\left(p, g_{0}, m\right)\right]_{p^{=} \mu^{2}, m \rightarrow 0}
$$

Window of applicability of RI-MOM

- $\Lambda_{Q C D} \ll \mu \ll \frac{\pi}{a}$

■ first inequality ensures the possibility of matching with some perturbative scheme MS and protects from Goldstone pole contaminations

- second inequality ensures small cutoff effects

Conversion to MS

- make connection with phenomenological calculations and experiments
- need to convert to $\overline{\mathrm{MS}}$ with factors $Z_{q}^{\overline{\mathrm{MS}}}=C_{q}^{-1} Z_{q}^{R I^{\prime}-M O M}$ and $Z_{\mathcal{O}}^{\overline{\mathrm{MS}}}=C_{\mathcal{O}}^{-1} Z_{\mathcal{O}}^{R I^{\prime}-M O M}$
- experiments usually provide results in MS at a reference scale $\mu=2 \mathrm{GeV}$
- evolve $\overline{\mathrm{MS}} \mathrm{RC} Z_{\mathcal{O}}^{\overline{M S}}$ using the scale dependence predicted by the RG equation

β is the usual QCD-beta function, γ the anomalous dimension of operator O and $\bar{g}\left(\mu^{2}\right)$ the running coupling

Conversion to MS

- make connection with phenomenological calculations and experiments
■ need to convert to $\overline{\mathrm{MS}}$ with factors $Z_{q}^{\overline{\mathrm{MS}}}=C_{q}^{-1} Z_{q}^{R I^{\prime}-M O M}$ and $Z_{\mathcal{O}}^{\overline{\mathrm{MS}}}=C_{\mathcal{O}}^{-1} Z_{\mathcal{O}}^{R I^{\prime}-M O M}$
- experiments usually provide results in $\overline{\mathrm{MS}}$ at a reference scale $\mu=2 \mathrm{GeV}$
- evolve $\overline{\mathrm{MS}} \mathrm{RCs} Z_{\mathcal{O}}^{\overline{\mathrm{MS}}}$ using the scale dependence predicted by the RG equation van Ritbergen et al (1997), Vermaseren et al (1997), Chetyrkin (1997),

Göckeler et al (1998)

$$
R_{\mathcal{O}\left(\mu, \mu_{0}\right)}:=\frac{Z_{\mathcal{O}(\mu)}}{Z_{\mathcal{O}\left(\mu_{0}\right)}}=\exp \left\{-\int_{\bar{g}\left(\mu_{0}^{2}\right)}^{\bar{g}\left(\mu^{2}\right)} d g \frac{\gamma(g)}{\beta(g)}\right\}
$$

β is the usual QCD-beta function, γ the anomalous dimension of operator \mathcal{O} and $\bar{g}\left(\mu^{2}\right)$ the running coupling

Simulation setup

■ $S=S_{I w a}^{Y M}+a^{4} \sum_{x, f} \bar{\chi}_{f}\left(\gamma \cdot \nabla-\frac{a}{2} \nabla \cdot \nabla+m_{0}+i r_{f} \mu_{f} \gamma_{5}\right) \chi_{f}$

- to achieve the benefits of the TM formulation one needs to work at maximal twist $\theta=\pi / 2$ Frezzotti and Rossi (2003-2004)
- automatic $O(a)$ improvement
- for $N_{\mathrm{f}}=4$ maximal twist (tuning $m_{P C A C}$ to zero was a highly non trivial task at the time these configurations where produced

Simulation setup

■ $S=S_{I w a}^{Y M}+a^{4} \sum_{x, f} \bar{\chi}_{f}\left(\gamma \cdot \nabla-\frac{a}{2} \nabla \cdot \nabla+m_{0}+i r_{f} \mu_{f} \gamma_{5}\right) \chi_{f}$

- to achieve the benefits of the TM formulation one needs to work at maximal twist $\theta=\pi / 2$ Frezzotti and Rossi (2003-2004)
- automatic $\mathcal{O}(a)$ improvement
- for $N_{\mathrm{f}}=4$ maximal twist (tuning $m_{P C A C}$ to zero was a highly non trivial task at the time these configurations where produced

Simulation setup

■ $S=S_{I w a}^{Y M}+a^{4} \sum_{x, f} \bar{\chi}_{f}\left(\gamma \cdot \nabla-\frac{a}{2} \nabla \cdot \nabla+m_{0}+i r_{f} \mu_{f} \gamma_{5}\right) \chi_{f}$

- to achieve the benefits of the TM formulation one needs to work at maximal twist $\theta=\pi / 2$ Frezzotti and Rossi (2003-2004)
- automatic $\mathcal{O}(a)$ improvement
- for $N_{\mathrm{f}}=4$ maximal twist (tuning $m_{P C A C}$ to zero was a highly non trivial task at the time these configurations where produced

Simulation setup

■ $S=S_{I w a}^{Y M}+a^{4} \sum_{x, f} \bar{\chi}_{f}\left(\gamma \cdot \nabla-\frac{a}{2} \nabla \cdot \nabla+m_{0}+i r_{f} \mu_{f} \gamma_{5}\right) \chi_{f}$

- to achieve the benefits of the TM formulation one needs to work at maximal twist $\theta=\pi / 2$ Frezzotti and Rossi (2003-2004)
- automatic $\mathcal{O}(a)$ improvement
- for $N_{\mathrm{f}}=4$ maximal twist (tuning $m_{P C A C}$ to zero was a highly non trivial task at the time these configurations where produced

Ensembles

ensemble	κ	$a m_{P C A C}$	$a \mu$ ($a \mu_{\text {sea }}$ in bold)	confs \#
$\beta=2.10-32^{3} .64$				
3p	0.156017	+0.00559(14)	$0.0025, \mathbf{0 . 0 0 4 6}, 0.0090,0.0152,0.0201,0.0249,0.0297$	250
3 m	0.156209	-0.00585(08)	$0.0025, \mathbf{0 . 0 0 4 6}, 0.0090,0.0152,0.0201,0.0249,0.0297$	250
4 p	0.155983	+0.00685(12)	$0.0039, \mathbf{0 . 0 0 6 4}, 0.0112,0.0184,0.0240,0.0295$	210
4 m	0.156250	$-0.00682(13)$	$0.0039,0.0064,0.0112,0.0184,0.0240,0.0295$	210
5 p	0.155949	$+0.00823(08)$	$0.0048, \mathbf{0 . 0 0 7 8}, 0.0119,0.0190,0.0242,0.0293$	220
5 m	0.156291	-0.00821(11)	$0.0048,0.0078,0.0119,0.0190,0.0242,0.0293$	220
$\beta=1.95-24^{3} .48$				
2p	0.160826	+0.01906(24)	$\mathbf{0 . 0 0 8 5}, 0.0150,0.0203,0.0252,0.0298$	290
2 m	0.161229	-0.02091(16)	0.0085, $0.0150,0.0203,0.0252,0.0298$	290
3 p	0.160826	+0.01632(21)	$0.0060,0.0085,0.0120,0.0150,0.0180,0.0203,0.0252,0.0298$	310
3 m	0.161229	-0.01602(20)	$0.0060,0.0085,0.0120,0.0150,0.0180,0.0203,0.0252,0.0298$	310
8 p	0.160524	+0.03634(14)	0.0020, $0.0085,0.0150,0.0203,0.0252,0.0298$	310
8 m	0.161585	-0.03627(11)	0.0020, 0.0085, 0.0150, 0.0203, 0.0252, 0.0298	310
$\beta=1.90-24^{3} .48$				
1p	0.162876	+0.0275(04)	0.0060, 0.0080, 0.0120, 0.0170, 0.0210, 0.0260	450
1 m	0.163206	-0.0273(02)	0.0060, 0.0080, 0.0120, 0.0170, 0.0210, 0.0260	450
4 p	0.162689	$+0.0398(01)$	0.0060, 0.0080, 0.0120, 0.0170, 0.0210, 0.0260	370
4 m	0.163476	-0.0390(01)	0.0060, 0.0080, 0.0120, 0.0170, 0.0210, 0.0260	370

$N_{f}=4$ ensembles used in our analysis

The lattice spacing values are respectively $a=0.062 \mathrm{fm}$ for $\beta=2.10$, $a=0.078 \mathrm{fm}$ for $\beta=1.95$ and $a=0.086$ fm for $\beta=1.90$

Pion mass for each ensemble, before θ average. The x-axis is the renormalized quark mass $M_{\text {renorm }}=\sqrt{\left(Z_{A} m_{P C A C}\right)^{2}+m_{q}^{2}}$ and the y-axis is the pion mass squared. The difference between m / p ensembles illustrates the consequence of non maximal twist and $\mathcal{O}(a)$ effects. The result of the straight line fit using pion mass values computed after θ average is shown in dashed blue curve.

Vertex Functions - The effect of the Goldstone pole subtraction

Scalar vertex function vs m_{π}^{2}
$32^{3} .64-\beta=2.1-3 p$

Pseudo-scalar vertex function vs $\mathrm{m}_{\pi}{ }^{2}$
$32^{3} .64-\beta=2.1-3 \mathrm{p}$

u scalar (LHS) and pseudo-scalar (RHS) vertex functions versus pion mass squared (in lattice unit) for ensemble $3 p$ for several values of $a^{2} \vec{p}^{2}$. (Full-) empty circles correspond to (un-)subtracted values while $*$ to the chiral extrapolation, (a. $p^{0}=\frac{\pi}{T}$ for all curves except the magenta one, for which a. $\left.p^{0}=\frac{21 \pi}{T}\right)$.

Pion Pole Contamination

■ Correlation functions of the pseudoscalar operator have pion pole contamination

- need to be addressed carefully
- ansatz for the amputated pseudoscalar vertex

Pion Pole Contamination

■ Correlation functions of the pseudoscalar operator have pion pole contamination

- need to be addressed carefully
- ansatz for the amputated pseudoscalar vertex

Pion Pole Contamination

■ Correlation functions of the pseudoscalar operator have pion pole contamination

- need to be addressed carefully
- ansatz for the amputated pseudoscalar vertex $\Gamma_{P}=a_{P}+b_{P} m_{\pi}^{2}+\frac{c_{P}}{m_{\pi}^{2}}$

Pion Pole Contamination

- Correlation functions of the pseudoscalar operator have pion pole contamination
- need to be addressed carefully
- ansatz for the amputated pseudoscalar vertex $\Gamma_{P}=a_{P}+b_{P} m_{\pi}^{2}+\frac{c_{P}}{m_{\pi}^{2}}$
- $\Gamma_{P}^{s u b}=\Gamma_{P}-\frac{c_{P}}{m_{\pi}^{2}}$

Coefficient of the $1 / m_{\pi}^{2}$ term (LHS) (varies as $1 / p^{2} @$ large p^{2}) and of the m_{π}^{2} term (RHS) in the chiral fit, $C\left(p^{2}\right)$ and $B\left(p^{2}\right)$ respectively as a function of $1 /\left(a^{2} p^{2}\right)$, for ensemble $3 p$. The green line is for eye guidance mainly and represents a linear fit at large p^{2}

Z_{P} / Z_{S}

Z_{P} / Z_{S} for ensemble $3 m p$ ($\beta=2.10, \mu=0.0046$, volume $32^{3} .64$). Lattice artifacts have been removed separately from Z_{S} and Z_{P}. The ratio of these two RCs is compatible with a constant over the whole $a^{2} p^{2}$ interval and $Z_{P} / Z_{S}=0.717(3)$.

Z_{q} and Z_{S} after $H(3)$ corrections

Quark renormalisation constant
$32.64-\beta=2.1-\mu=0.0046$

Scalar renormalisation constant

Quark renormalization constant (LHS) and scalar renormalization constant (RHS.) as a function of $a^{2} p^{[2]}$. Both exhibit the typical "fishbone" structure induced by the breaking of the $O(4)$ rotational symmetry of the Euclidian space-time by the lattice discretization, into the hypercubic group $H(4)$.

RCs after $H(4)$ corrections

LHS: Effect of hypercubic corrections on quark renormalization constant, as a function of $a^{2} p^{[2]}$. RHS: renormalization constants as a function of $a^{2} p^{[2]}$, after removing $H(4)$ artifacts.

Correcting for artifacts

- hypercubic artifacts that respect $\mathrm{H}(4)$ but not $\mathrm{O}(4)$

■ artifacts that respect $\mathrm{O}(4)$ will be treated NP by introducing corrections to the running

- egalitarian method (does not rely on the selection of diagonal momenta which have small H (4) artifacts like the method of democratic cuts
- keeps maximum amount of info- allows for the testing of the running of RCs

Correcting for artifacts

- hypercubic artifacts that respect $\mathrm{H}(4)$ but not $\mathrm{O}(4)$

■ artifacts that respect $\mathrm{O}(4)$ will be treated NP by introducing corrections to the running

- egalitarian method (does not rely on the selection of diagonal momenta which have small $\mathrm{H}(4)$ artifacts like the method of democratic cuts Boucaud et al (2003), de Soto et al (2007)
■ keeps maximum amount of info- allows for the testing of the running of RCs

Correcting for artifacts

■ hypercubic artifacts that respect $\mathrm{H}(4)$ but not O (4)
■ artifacts that respect $\mathrm{O}(4)$ will be treated NP by introducing corrections to the running

- egalitarian method (does not rely on the selection of diagonal momenta which have small H (4) artifacts like the method of democratic cuts Boucaud et al (2003), de Soto et al (2007)
- keeps maximum amount of info- allows for the testing of the running of RCs

Correcting for artifacts

- we define the $\mathrm{H}(4)$ invariants
- $p^{[4]}=\sum_{\mu=1}^{4} p_{\mu}^{4}, \quad p^{[6]}=\sum_{\mu=1}^{4} p_{\mu}^{6}, \quad p^{[8]}=\sum_{\mu=1}^{4} p_{\mu}^{8}$
- Expand the RC already averaged over the cubic orbits around $p^{[4]}=0$
- $Z_{\text {latt }}\left(a^{2} p^{2}, a^{4} p^{[4]}, a^{6} p^{[6]}, a p_{4}, a^{2} \Lambda_{Q C D}\right)=$

Correcting for artifacts

- we define the $\mathrm{H}(4)$ invariants
- $p^{[4]}=\sum_{\mu=1}^{4} p_{\mu}^{4}$, $p^{[6]}=\sum_{\mu=1}^{4} p_{\mu}^{6}$,

$$
p^{[8]}=\sum_{\mu=1}^{4} p_{\mu}^{8}
$$

- Expand the RC already averaged over the cubic orbits around $p^{[4]}=0$
- $Z_{\text {latt }}\left(a^{2} p^{2}, a^{4} p^{[4]}, a^{6} p^{[6]}, a p_{4}, a^{2} \Lambda_{Q C D}\right)=$
$Z_{\text {hypcorrected }}\left(a^{2} p^{2}, a p_{4}, a^{2} \Lambda_{Q C D}\right)+R\left(a^{2} p^{2}, a^{2} \Lambda_{Q C D}\right) \frac{a^{2} p^{[4]}}{p^{2}}+$

Correcting for artifacts

- we define the $\mathrm{H}(4)$ invariants
- $p^{[4]}=\sum_{\mu=1}^{4} p_{\mu}^{4}$, $p^{[6]}=\sum_{\mu=1}^{4} p_{\mu}^{6}$,

$$
p^{[8]}=\sum_{\mu=1}^{4} p_{\mu}^{8}
$$

- Expand the RC already averaged over the cubic orbits around $p^{[4]}=0$
- $Z_{\text {latt }}\left(a^{2} p^{2}, a^{4} p^{[4]}, a^{6} p^{[6]}, a p_{4}, a^{2} \Lambda_{Q C D}\right)=$
$Z_{\text {hypcorrected }}\left(a^{2} p^{2}, a p_{4}, a^{2} \Lambda_{Q C D}\right)+R\left(a^{2} p^{2}, a^{2} \Lambda_{Q C D}\right) \frac{a^{2} p^{[4]}}{p^{2}}+$
- $R\left(a^{2} p^{2}, a^{2} \Lambda_{Q C D}\right)=\left.\frac{d Z_{\text {latt }}\left(a^{2} p^{2}, 0,0,0, a^{2} \Lambda_{Q C D}\right)}{d \epsilon}\right|_{\epsilon=0}=$ $c_{a 2 p 4}+c_{a 4 p 4} a^{2} p^{2}$

■ consider for the running of Z_{q} Blossier et al (2010)

$$
\begin{aligned}
Z_{q}^{h y p-c o r r}\left(a^{2} p^{2}\right) & =Z_{q}^{p e r t} R I^{\prime}\left(\mu^{2}\right) c_{0 Z_{q}}^{R I^{\prime}}\left(\frac{p^{2}}{\mu^{2}}, \alpha(\mu)\right) \\
& \times\left(1+\frac{\left\langle A^{2}\right\rangle_{\mu^{2}}}{32 p^{2}} \frac{c_{2 Z_{q}}^{\mathrm{MS}}\left(\frac{p^{2}}{\mu^{2}}, \alpha(\mu)\right)}{c_{0 Z_{q}}^{R I^{\prime}}\left(\frac{p^{2}}{\mu^{2}}, \alpha(\mu)\right)} \frac{c_{2 Z_{q}}^{R I^{\prime}}\left(\frac{p^{2}}{\mu^{2}}, \alpha(\mu)\right)}{c_{2 Z_{q}}^{\mathrm{MS}}\left(\frac{p^{2}}{\mu^{2}}, \alpha(\mu)\right)}\right) \\
& +c_{a 2 p 2} a^{2} p^{2}+c_{a 4 p 4}\left(a^{2} p^{2}\right)^{2}
\end{aligned}
$$

- coefficients $c_{0 Z_{q}}^{R I^{\prime}}$ and $c_{2 Z_{q}}^{\overline{M S}}$ known from PT
- the running formula contains lattice artifact terms $\propto a^{2} p^{2}$ and $\propto\left(a^{2} p^{2}\right)^{2}$, not yet removed
- consider for the running of Z_{q} Blossier et al (2010)

$$
\begin{aligned}
Z_{q}^{\text {hyp-corr }}\left(a^{2} p^{2}\right) & =Z_{q}^{\text {pert } R I^{\prime}}\left(\mu^{2}\right) c_{0 Z_{q}}^{R I^{\prime}}\left(\frac{p^{2}}{\mu^{2}}, \alpha(\mu)\right) \\
& \times\left(1+\frac{\left\langle A^{2}\right\rangle_{\mu^{2}}}{32 p^{2}} \frac{c_{2 Z_{q}}^{\mathrm{MS}}\left(\frac{p^{2}}{\mu^{2}}, \alpha(\mu)\right)}{c_{0 Z_{q}}^{R I^{\prime}}\left(\frac{p^{2}}{\mu^{2}}, \alpha(\mu)\right)} \frac{c_{2 Z_{q}}^{R I^{\prime}}\left(\frac{p^{2}}{\mu^{2}}, \alpha(\mu)\right)}{\left.c_{2 Z_{q}}^{M\left(\frac{p^{2}}{\mu^{2}}\right.}, \alpha(\mu)\right)}\right) \\
& +c_{a 2 p 2} a^{2} p^{2}+c_{a 4 p 4}\left(a^{2} p^{2}\right)^{2}
\end{aligned}
$$

- coefficients $c_{0 Z_{q}}^{R I^{\prime}}$ and $c_{2 Z_{q}}^{\overline{\mathrm{MS}}}$ known from PT
- the running formula contains lattice artifact terms $\propto a^{2} p^{2}$ and $\propto\left(a^{2} p^{2}\right)^{2}$, not yet removed
- consider for the running of Z_{q} Blossier et al (2010)

$$
\begin{aligned}
Z_{q}^{\text {hyp-corr }}\left(a^{2} p^{2}\right) & =Z_{q}^{\text {pert } R I^{\prime}}\left(\mu^{2}\right) c_{0 Z_{q}}^{R I^{\prime}}\left(\frac{p^{2}}{\mu^{2}}, \alpha(\mu)\right) \\
& \times\left(1+\frac{\left\langle A^{2}\right\rangle_{\mu^{2}}}{32 p^{2}} \frac{\overline{M_{2 Z_{q}}}\left(\frac{p^{2}}{\mu^{2}}, \alpha(\mu)\right)}{c_{0 Z_{q}}^{R I^{\prime}}\left(\frac{p^{2}}{\mu^{2}}, \alpha(\mu)\right)} \frac{c_{2 Z_{q}}^{R I^{\prime}}\left(\frac{p^{2}}{\mu^{2}}, \alpha(\mu)\right)}{\left.c_{2 Z_{q}}^{M \mathrm{~S}} \frac{p^{2}}{\mu^{2}}, \alpha(\mu)\right)}\right) \\
& +c_{a 2 p 2} a^{2} p^{2}+c_{a 4 p 4}\left(a^{2} p^{2}\right)^{2}
\end{aligned}
$$

- coefficients $c_{0 Z_{q}}^{R I^{\prime}}$ and $c_{2 Z_{q}}^{\overline{\mathrm{MS}}}$ known from PT
- the running formula contains lattice artifact terms $\propto a^{2} p^{2}$ and $\propto\left(a^{2} p^{2}\right)^{2}$, not yet removed.
- consider for the running of Z_{q} Blossier et al (2010)

$$
\begin{aligned}
Z_{q}^{\text {hyp-corr }}\left(a^{2} p^{2}\right) & =Z_{q}^{\text {pert } R I^{\prime}}\left(\mu^{2}\right) c_{0 Z_{q}}^{R I^{\prime}}\left(\frac{p^{2}}{\mu^{2}}, \alpha(\mu)\right) \\
& \times\left(1+\frac{\left\langle A^{2}\right\rangle_{\mu^{2}}}{32 p^{2}} \frac{\overline{M_{2 Z}}}{c_{q}\left(\frac{p^{2}}{\mu^{2}}, \alpha(\mu)\right)} \frac{c_{2 Z_{q}}^{R I^{\prime}}\left(\frac{p^{2}}{\mu^{2}}, \alpha(\mu)\right)}{\left.c_{0 Z_{q}}^{\mu^{2}}, \alpha(\mu)\right)} \frac{\left.\overline{\mathrm{MS}} c_{2 Z_{q}}^{p^{2}}, \alpha(\mu)\right)}{\mu^{2}}\right) \\
& +c_{a 2 p 2} a^{2} p^{2}+c_{a 4 p 4}\left(a^{2} p^{2}\right)^{2}
\end{aligned}
$$

- coefficients $c_{0 Z_{q}}^{R I^{\prime}}$ and $c_{2 Z_{q}}^{\overline{\mathrm{MS}}}$ known from PT
- the running formula contains lattice artifact terms $\propto a^{2} p^{2}$ and $\propto\left(a^{2} p^{2}\right)^{2}$, not yet removed.
■ need to determine, $Z_{q}^{\text {pert } R I^{\prime}}\left(\mu^{2}\right),\left\langle A^{2}\right\rangle_{\mu^{2}}, c_{a 2 p 2}$ and $c_{a 4 p 4}$

Running of Z_{q}

Running of Z_{q} for ensemble $3 m p$ ($\beta=2.10, \mu=0.0046$, volume $32^{3} .64$) using different fitting formulae.

LHS: running of Z_{S} for ensemble $3 m p$ ($\beta=2.10, \mu=0.0046$, volume $32^{3} .64$). The standard running formula is represented in solid blue line, the dashed cyan curve includes an $1 / a^{2} p^{2}$ and an $a^{2} p^{2}$ term. This latter fit leads to $Z_{S}(10 \mathrm{GeV})=0.869(4)$. RHS: Running of Z_{P} with the standard running expression Chetrrkin et al (1999) (solid blue curve), and adding an $1 / a^{2} p^{2}$ and an $a^{2} p^{2}$ terms (dashed cyan curve). The modified running gives $Z_{P}(10 \mathrm{GeV})=0.623(2)$.

Z_{V} and Z_{A}

Fits of the residual $a^{2} p^{2}$ dependence of Z_{V} and Z_{A} for ensemble 3 mp ($\beta=2.10, \mu=0.0046$, volume $32^{3} .64$)

Chiral extrapolation and lattice spacing dependence

LHS: $N_{f}=4$ local RCs dependence with the pion mass. The straight dashed lines are constant fits for each β values. The red points correspond to $\beta=2.10$, the black ones to $\beta=1.95$, and the blue ones to $\beta=1.90$.
RHS: RCs after chiral extrapolation, vs $\log a^{2}$. All RCs follow a linear dependence with $\log a^{2}$ to a very high accuracy.

β	Z_{q}	Z_{S}	Z_{P}	Z_{V}	Z_{A}	Z_{P} / Z_{S}
1.90	$0.767(3)$	$0.910(3)$	$0.543(3)$	$0.623(2)$	$0.717(1)$	$0.600(4)$
1.95	$0.775(2)$	$0.903(4)$	$0.576(2)$	$0.639(2)$	$0.726(2)$	$0.637(4)$
2.10	$0.791(2)$	$0.887(2)$	$0.639(1)$	$0.687(1)$	$0.755(1)$	$0.720(4)$

converted our RI'-MOM results at 10 GeV to $\overline{\mathrm{MS}}$ values at a reference scale of 2 GeV leads to the final RC

Conclusions and Outlook

- Provided NP results for the RCs of $N_{\mathrm{f}}=2+1+1$ Twisted Mass QCD
- Hypercubic artifacts were taken correctly into account by the egalitarian" method
- Complete the analysis of twist-2 operators
- Extend our work to the new ensembles of ETMC with the large volumes $48^{3} \times 96$ and masses @ the physical point
- Check the effect of Gribov conies
- Perform the analysis using the RI-SMOM scheme

Conclusions and Outlook

- Provided NP results for the RCs of $N_{\mathrm{f}}=2+1+1$ Twisted Mass QCD
- Hypercubic artifacts were taken correctly into account by the "egalitarian" method
- Complete the analysis of twist-2 operators

■ Extend our work to the new ensembles of ETMC with the large volumes $48^{3} \times 96$ and masses @ the physical point

- Check the effect of Gribov copies
- Perform the analysis using the RI-SMOM scheme

Conclusions and Outlook

- Provided NP results for the RCs of $N_{\mathrm{f}}=2+1+1$ Twisted Mass QCD
- Hypercubic artifacts were taken correctly into account by the "egalitarian" method
- Complete the analysis of twist-2 operators
- Extend our work to the new ensembles of ETMC with the large volumes $48^{3} \times 96$ and masses @ the physical point

■ Check the effect of Gribov copies

- Perform the analysis using the RI-SMOM scheme

Conclusions and Outlook

- Provided NP results for the RCs of $N_{\mathrm{f}}=2+1+1$ Twisted Mass QCD
- Hypercubic artifacts were taken correctly into account by the "egalitarian" method
- Complete the analysis of twist-2 operators
- Extend our work to the new ensembles of ETMC with the large volumes $48^{3} \times 96$ and masses @ the physical point
- Check the effect of Gribov copies
- Perform the analysis using the RI-SMOM scheme

Conclusions and Outlook

- Provided NP results for the RCs of $N_{\mathrm{f}}=2+1+1$ Twisted Mass QCD
- Hypercubic artifacts were taken correctly into account by the "egalitarian" method
- Complete the analysis of twist-2 operators
- Extend our work to the new ensembles of ETMC with the large volumes $48^{3} \times 96$ and masses @ the physical point
■ Check the effect of Gribov copies
- Perform the analysis using the RI-SMOM scheme

Conclusions and Outlook

- Provided NP results for the RCs of $N_{\mathrm{f}}=2+1+1$ Twisted Mass QCD
- Hypercubic artifacts were taken correctly into account by the "egalitarian" method
- Complete the analysis of twist-2 operators
- Extend our work to the new ensembles of ETMC with the large volumes $48^{3} \times 96$ and masses @ the physical point
■ Check the effect of Gribov copies
- Perform the analysis using the RI-SMOM scheme

Stay Tuned!

for upcoming results ... Thank you for your attention!

