

Renormalization constants for $N_{\rm f} = 2 + 1 + 1$ twisted mass QCD

Savvas Zafeiropoulos

Laboratoire de Physique Corpusculaire Université Blaise Pascal, CNRS/IN2P3

May 26-28 2014 LPSC Grenoble To my collaborators: Benoit Blossier, Mariane Brinet, Pierre Guichon, Vincent Morenas, Olivier Péne, Pepe Rodríguez-Quintero and to Tassos Vladikas for fruitful discussions

Outline

- Motivation
- RI'-MOM scheme-generalities
- RCs
- Conclusions and Outlook

Lattice formalism is bare QFT

- One computes bare matrix elements of operators at fixed cutoff
- Must renormalize to obtain continuum Physics
- $\bullet O_R = Z_O O_b$
- Renormalization can be done perturbatively or non-perturbatively

- Lattice formalism is bare QFT
- One computes bare matrix elements of operators at fixed cutoff
- Must renormalize to obtain continuum Physics
- $\bullet O_R = Z_O O_b$
- Renormalization can be done perturbatively or non-perturbatively

- Lattice formalism is bare QFT
- One computes bare matrix elements of operators at fixed cutoff
- Must renormalize to obtain continuum Physics

$$\bullet O_R = Z_O O_b$$

 Renormalization can be done perturbatively or non-perturbatively

- Lattice formalism is bare QFT
- One computes bare matrix elements of operators at fixed cutoff
- Must renormalize to obtain continuum Physics
- $\bullet O_R = Z_O O_b$
- Renormalization can be done perturbatively or non-perturbatively

Lattice PT

Lattice PT-notorious for its bad convergence

- MILC collaboration found that m_s was raised by 14% once its renormalization constant (RC) known in 1-loop PT was calculated @ 2-loops.
- Göckeler et al found that m_s was raised by 24% once its RC known in 1-loop PT was calculated non-perturbatively.

- Lattice PT-notorious for its bad convergence
- MILC collaboration found that m_s was raised by 14% once its renormalization constant (RC) known in 1-loop PT was calculated @ 2-loops.
- Göckeler et al found that m_s was raised by 24% once its RC known in 1-loop PT was calculated non-perturbatively.

- Lattice PT-notorious for its bad convergence
- MILC collaboration found that m_s was raised by 14% once its renormalization constant (RC) known in 1-loop PT was calculated @ 2-loops.
- Göckeler et al found that m_s was raised by 24% once its RC known in 1-loop PT was calculated non-perturbatively.

Non-Perturbative Renormalization

- RI-MOM scheme Martinelli et al (1995)
- Work on the calculation of the RCs by many groups many of them belonging to the ETMC

Göckeler et al (1998), Constantinou et al (2009-2012), Dimopoulos et al (2011), Blossier et al (2011)

Schrödinger Functional scheme Lüscher et al (1996)

Non-Perturbative Renormalization

- RI-MOM scheme Martinelli et al (1995)
- Work on the calculation of the RCs by many groups many of them belonging to the ETMC

Göckeler et al (1998), Constantinou et al (2009-2012), Dimopoulos et al (2011), Blossier et al (2011)

Schrödinger Functional scheme Lüscher et al (1996)

• focus on local fermion bilinears $O_{\Gamma} = \bar{\psi}(x)\Gamma\psi(x)$

- Γ can be any Dirac structure and can even potentially contain covariant derivatives
- inserting O_{Γ} in the fermion 2-pt function

$$\bullet G_O = \langle u(x_1) O_{\Gamma} \bar{d}(x_2) \rangle$$

- the amputated Green's function
- $\Lambda_O(p_1, p_2) = S_u^{-1}(P_1)G_O(p_1, p_2)S_d^{-1}(p_2)$
- $\Gamma_O(p) = \frac{1}{12} \operatorname{tr} \left[P_O \Lambda_O(p, p) \right]$
- $\square \Gamma_O(p)_R = \lim_{a \to 0} Z_q^{-1} Z_O \Gamma_O(p)$
- $\ \, { I } \ \, { Z_q } (\mu^2 = p^2) = \frac{i}{12p^2} {\rm tr} \left[S_{bare}^{-1} (p) p \right]$

• focus on local fermion bilinears $O_{\Gamma} = \bar{\psi}(x)\Gamma\psi(x)$

- Γ can be any Dirac structure and can even potentially contain covariant derivatives
- inserting O_{Γ} in the fermion 2-pt function
- $\bullet \ G_O = \langle u(x_1) O_{\Gamma} \bar{d}(x_2) \rangle$
- the amputated Green's function
- $\Lambda_O(p_1, p_2) = S_u^{-1}(P_1)G_O(p_1, p_2)S_d^{-1}(p_2)$
- $\Gamma_O(p) = \frac{1}{12} \operatorname{tr} \left[P_O \Lambda_O(p, p) \right]$
- $\square \Gamma_O(p)_R = \lim_{a \to 0} Z_q^{-1} Z_O \Gamma_O(p)$
- $Z_q(\mu^2 = p^2) = -\frac{i}{12p^2} \text{tr} \left[S_{bare}^{-1}(p) \not p \right]$

• focus on local fermion bilinears $O_{\Gamma} = \bar{\psi}(x)\Gamma\psi(x)$

- Γ can be any Dirac structure and can even potentially contain covariant derivatives
- inserting O_{Γ} in the fermion 2-pt function
- $\bullet \ G_O = \langle u(x_1) O_{\Gamma} \bar{d}(x_2) \rangle$
- the amputated Green's function
- $\Lambda_O(p_1, p_2) = S_u^{-1}(P_1)G_O(p_1, p_2)S_d^{-1}(p_2)$
- $\Gamma_O(p) = \frac{1}{12} \operatorname{tr} \left[P_O \Lambda_O(p, p) \right]$
- $\square \Gamma_O(p)_R = \lim_{a \to 0} Z_q^{-1} Z_O \Gamma_O(p)$
- $Z_q(\mu^2 = p^2) = -\frac{i}{12p^2} \text{tr} \left[S_{bare}^{-1}(p) \not p \right]$

• focus on local fermion bilinears $O_{\Gamma} = \bar{\psi}(x)\Gamma\psi(x)$

- Γ can be any Dirac structure and can even potentially contain covariant derivatives
- inserting O_{Γ} in the fermion 2-pt function
- $\bullet \ G_O = \langle u(x_1) O_{\Gamma} \bar{d}(x_2) \rangle$
- the amputated Green's function
- $\Lambda_O(p_1, p_2) = S_u^{-1}(P_1)G_O(p_1, p_2)S_d^{-1}(p_2)$
- $\Gamma_O(p) = \frac{1}{12} \operatorname{tr} \left[P_O \Lambda_O(p, p) \right]$
- $\Gamma_O(p)_R = \lim_{a \to 0} Z_q^{-1} Z_O \Gamma_O(p)$
- $Z_q(\mu^2 = p^2) = -\frac{i}{12p^2} \text{tr} \left[S_{bare}^{-1}(p) \not p \right]$

• focus on local fermion bilinears $O_{\Gamma} = \bar{\psi}(x)\Gamma\psi(x)$

Vladikas Les Houches lectures

- Γ can be any Dirac structure and can even potentially contain covariant derivatives
- inserting O_{Γ} in the fermion 2-pt function

$$G_O = \langle u(x_1) O_{\Gamma} \bar{d}(x_2) \rangle$$

- the amputated Green's function
- $\Lambda_O(p_1, p_2) = S_u^{-1}(P_1)G_O(p_1, p_2)S_d^{-1}(p_2)$

•
$$\Gamma_O(p) = \frac{1}{12} \operatorname{tr} \left[P_O \Lambda_O(p, p) \right]$$

$$\Gamma_O(p)_R = \lim_{a \to 0} Z_q^{-1} Z_O \Gamma_O(p)$$

 $Z_q(\mu^2 = p^2) = -\frac{i}{12p^2} tr \left[S_{bare}^{-1}(p) \not p \right]$

• focus on local fermion bilinears $O_{\Gamma} = \bar{\psi}(x)\Gamma\psi(x)$

- Γ can be any Dirac structure and can even potentially contain covariant derivatives
- inserting O_{Γ} in the fermion 2-pt function

$$G_O = \langle u(x_1) O_{\Gamma} \bar{d}(x_2) \rangle$$

- the amputated Green's function
- $\Lambda_O(p_1, p_2) = S_u^{-1}(P_1)G_O(p_1, p_2)S_d^{-1}(p_2)$

•
$$\Gamma_O(p) = \frac{1}{12} \operatorname{tr} \left[P_O \Lambda_O(p, p) \right]$$

•
$$\Gamma_O(p)_R = \lim_{a \to 0} Z_q^{-1} Z_O \Gamma_O(p)$$

$$= Z_q(\mu^2 = p^2) = -\frac{i}{12p^2} \text{tr} \left[S_{bare}^{-1}(p) \not p \right]$$

- impose that the amputated Green's function in the chiral limit @ a large Euclidean scale $p^2 = \mu^2$ is equal to its tree level value
- $\Gamma_O(p)_R(\mu, g_R, m_R = 0) =$ $\lim_{a \to 0} [Z_q^{-1}(a\mu, g_0) Z_O(a\mu, g_0) \Gamma_O(p, g_0, m)]_{p=\mu^2, m \to 0}$

Window of applicability of RI-MOM

- $\Lambda_{QCD} \ll \mu \ll \frac{\pi}{a}$
- first inequality ensures the possibility of matching with some perturbative scheme MS and protects from Goldstone pole contaminations
- second inequality ensures small cutoff effects

Conversion to MS

- make connection with phenomenological calculations and experiments
- need to convert to $\overline{\text{MS}}$ with factors $Z_q^{\overline{\text{MS}}} = C_q^{-1} Z_q^{RI'-MOM}$ and $Z_{\mathcal{O}}^{\overline{\text{MS}}} = C_{\mathcal{O}}^{-1} Z_{\mathcal{O}}^{RI'-MOM}$
- \blacksquare experiments usually provide results in $\overline{\rm MS}$ at a reference scale $\mu=2~{\rm GeV}$
- evolve MS RCs Z^{MS}_O using the scale dependence predicted by the RG equation van Ritbergen et al (1997), Vermaseren et al (1997), Chetyrkin (1997),
 Göckeler et al (1998)

$$R_{\mathcal{O}(\mu,\mu_0)} := \frac{Z_{\mathcal{O}(\mu)}}{Z_{\mathcal{O}(\mu_0)}} = \exp\left\{-\int_{\bar{g}(\mu_0^2)}^{\bar{g}(\mu^2)} dg \frac{\gamma(g)}{\beta(g)}\right\}$$

 β is the usual QCD-beta function, γ the anomalous dimension of operator ${\cal O}$ and $\bar{g}(\mu^2)$ the running coupling

Conversion to MS

- make connection with phenomenological calculations and experiments
- need to convert to $\overline{\text{MS}}$ with factors $Z_q^{\overline{\text{MS}}} = C_q^{-1} Z_q^{RI'-MOM}$ and $Z_{\mathcal{O}}^{\overline{\text{MS}}} = C_{\mathcal{O}}^{-1} Z_{\mathcal{O}}^{RI'-MOM}$
- \blacksquare experiments usually provide results in $\overline{\rm MS}$ at a reference scale $\mu=2~{\rm GeV}$
- evolve MS RCs Z_O^{MS} using the scale dependence predicted by the RG equation van Ritbergen et al (1997), Vermaseren et al (1997), Chetyrkin (1997), Göckeler et al (1998)

$$R_{\mathcal{O}(\mu,\mu_0)} := \frac{Z_{\mathcal{O}(\mu)}}{Z_{\mathcal{O}(\mu_0)}} = \exp\left\{-\int_{\bar{g}(\mu_0^2)}^{\bar{g}(\mu^2)} dg \frac{\gamma(g)}{\beta(g)}\right\}$$

 β is the usual QCD-beta function, γ the anomalous dimension of operator ${\cal O}$ and $\bar{g}(\mu^2)$ the running coupling

Simulation setup

•
$$S = S_{Iwa}^{YM} + a^4 \sum_{x,f} \bar{\chi}_f \left(\gamma \cdot \nabla - \frac{a}{2} \nabla \cdot \nabla + m_0 + i r_f \mu_f \gamma_5 \right) \chi_f$$

• to achieve the benefits of the TM formulation one needs to work at maximal twist $\theta = \pi/2$ Frezzotti and Rossi (2003-2004)

• automatic $\mathcal{O}(a)$ improvement

for $N_{\rm f}=4$ maximal twist (tuning m_{PCAC} to zero was a highly non trivial task at the time these configurations where produced

Simulation setup

$$\bullet S = S_{Iwa}^{YM} + a^4 \sum_{x,f} \bar{\chi}_f \left(\gamma \cdot \nabla - \frac{a}{2} \nabla \cdot \nabla + m_0 + i r_f \mu_f \gamma_5 \right) \chi_f$$

- to achieve the benefits of the TM formulation one needs to work at maximal twist $\theta = \pi/2$ Frezzotti and Rossi (2003-2004)
- automatic $\mathcal{O}(a)$ improvement
- for $N_{\rm f} = 4$ maximal twist (tuning m_{PCAC} to zero was a highly non trivial task at the time these configurations where produced

Simulation setup

$$\bullet S = S_{Iwa}^{YM} + a^4 \sum_{x,f} \bar{\chi}_f \left(\gamma \cdot \nabla - \frac{a}{2} \nabla \cdot \nabla + m_0 + i r_f \mu_f \gamma_5 \right) \chi_f$$

• to achieve the benefits of the TM formulation one needs to work at maximal twist $\theta = \pi/2$ Frezzotti and Rossi (2003-2004)

• automatic
$$\mathcal{O}(a)$$
 improvement

for $N_{\rm f}=4$ maximal twist (tuning m_{PCAC} to zero was a highly non trivial task at the time these configurations where produced

•
$$S = S_{Iwa}^{YM} + a^4 \sum_{x,f} \bar{\chi}_f \left(\gamma \cdot \nabla - \frac{a}{2} \nabla \cdot \nabla + m_0 + i r_f \mu_f \gamma_5 \right) \chi_f$$

- to achieve the benefits of the TM formulation one needs to work at maximal twist $\theta = \pi/2$ Frezzotti and Rossi (2003-2004)
- automatic $\mathcal{O}(a)$ improvement
- for $N_{\rm f}=4$ maximal twist (tuning m_{PCAC} to zero was a highly non trivial task at the time these configurations where produced

ensemble	κ	am_{PCAC}	$a\mu \ (a\mu_{sea} \text{ in bold})$						
$eta = 2.10$ - $32^3.64$									
3p	0.156017	+0.00559(14)	0.0025, 0.0046 , 0.0090, 0.0152, 0.0201, 0.0249, 0.0297	250					
3m	0.156209	-0.00585(08)	$0.0025, {\bf 0.0046}, 0.0090, 0.0152, 0.0201, 0.0249, 0.0297$	250					
4p	0.155983	+0.00685(12)	$0.0039, {\bf 0.0064}, 0.0112, 0.0184, 0.0240, 0.0295$	210					
4m	0.156250	-0.00682(13)	$0.0039, {\bf 0.0064}, 0.0112, 0.0184, 0.0240, 0.0295$	210					
5p	0.155949	+0.00823(08)	$0.0048, {\bf 0.0078}, 0.0119, 0.0190, 0.0242, 0.0293$	220					
5m	0.156291	-0.00821(11)	0.0048, 0.0078 , 0.0119, 0.0190, 0.0242, 0.0293	220					
$eta = 1.95 - 24^3.48$									
2p	0.160826	+0.01906(24)	0.0085 , 0.0150, 0.0203, 0.0252, 0.0298	290					
2m	0.161229	-0.02091(16)	0.0085 , 0.0150, 0.0203, 0.0252, 0.0298	290					
3p	0.160826	+0.01632(21)	0.0060, 0.0085, 0.0120, 0.0150, 0.0180 , 0.0203, 0.0252, 0.0298	310					
3m	0.161229	-0.01602(20)	0.0060, 0.0085, 0.0120, 0.0150, 0.0180 , 0.0203, 0.0252, 0.0298	310					
8p	0.160524	+0.03634(14)	0.0020 , 0.0085, 0.0150, 0.0203, 0.0252, 0.0298	310					
8m	0.161585	-0.03627(11)	0.0020 , 0.0085, 0.0150, 0.0203, 0.0252, 0.0298	310					
$eta = 1.90 - 24^3.48$									
1p	0.162876	+0.0275(04)	0.0060, 0.0080 , 0.0120, 0.0170, 0.0210, 0.0260	450					
1m	0.163206	-0.0273(02)	0.0060, 0.0080 , 0.0120, 0.0170, 0.0210, 0.0260	450					
4p	0.162689	+0.0398(01)	0.0060, 0.0080 , 0.0120, 0.0170, 0.0210, 0.0260	370					
4m	0.163476	-0.0390(01)	0.0060, 0.0080, 0.0120, 0.0170, 0.0210, 0.0260	370					

 $N_f = 4$ ensembles used in our analysis The lattice spacing values are respectively a = 0.062 fm for $\beta = 2.10$, a = 0.078 fm for $\beta = 1.95$ and a = 0.086 fm for $\beta = 1.90$

Pion Masses

Pion mass for each ensemble, before θ average. The *x*-axis is the renormalized quark mass $M_{renorm} = \sqrt{(Z_A m_{PCAC})^2 + m_q^2}$ and the *y*-axis is the pion mass squared. The difference between m/p ensembles illustrates the consequence of non maximal twist and $\mathcal{O}(a)$ effects. The result of the straight line fit using pion mass values computed after θ average is shown in dashed blue curve.

Vertex Functions - The effect of the Goldstone pole subtraction

u scalar (LHS) and pseudo-scalar (RHS) vertex functions versus pion mass squared (in lattice unit) for ensemble 3p for several values of $a^2 \vec{p}^2$. (Full-) empty circles correspond to (un-)subtracted values while * to the chiral extrapolation, $(a.p^0 = \frac{\pi}{T}$ for all curves except the magenta one, for which $a.p^0 = \frac{21\pi}{T}$).

- Correlation functions of the pseudoscalar operator have pion pole contamination
- need to be addressed carefully
- ansatz for the amputated pseudoscalar vertex $\Gamma_P = a_P + b_P m_\pi^2 + \frac{c_P}{m_\pi^2}$

$$\Gamma_P^{sub} = \Gamma_P - \frac{c_P}{m_\pi^2}$$

Pion Pole Contamination

- Correlation functions of the pseudoscalar operator have pion pole contamination
- need to be addressed carefully
- ansatz for the amputated pseudoscalar vertex $\Gamma_P = a_P + b_P m_\pi^2 + \frac{c_P}{m_\pi^2}$

$$\Gamma_P^{sub} = \Gamma_P - \frac{c_P}{m_\pi^2}$$

- Correlation functions of the pseudoscalar operator have pion pole contamination
- need to be addressed carefully
- ansatz for the amputated pseudoscalar vertex $\Gamma_P = a_P + b_P m_\pi^2 + \frac{c_P}{m_\pi^2}$

 $\square \Gamma_P^{sub} = \Gamma_P - \frac{c_P}{m_\pi^2}$

- Correlation functions of the pseudoscalar operator have pion pole contamination
- need to be addressed carefully
- ansatz for the amputated pseudoscalar vertex $\Gamma_P = a_P + b_P m_\pi^2 + \frac{c_P}{m_\pi^2}$

$$\Gamma_P^{sub} = \Gamma_P - \frac{c_P}{m_\pi^2}$$

Coefficient of the $1/m_{\pi}^2$ term (LHS) (varies as $1/p^2$ @ large p^2) and of the m_{π}^2 term (RHS) in the chiral fit, $C(p^2)$ and $B(p^2)$ respectively as a function of $1/(a^2p^2)$, for ensemble 3p. The green line is for eye guidance mainly and represents a linear fit at large p^2

Z_P/Z_S

 Z_P/Z_S for ensemble 3mp ($\beta = 2.10$, $\mu = 0.0046$, volume $32^3.64$). Lattice artifacts have been removed separately from Z_S and Z_P . The ratio of these two RCs is compatible with a constant over the whole a^2p^2 interval and $Z_P/Z_S = 0.717(3)$.

Z_q and Z_S after H(3) corrections

Quark renormalization constant (LHS) and scalar renormalization constant (RHS.) as a function of $a^2p^{[2]}$. Both exhibit the typical "fishbone" structure induced by the breaking of the O(4) rotational symmetry of the Euclidian space-time by the lattice discretization, into the hypercubic group H(4).

RCs after H(4) corrections

LHS: Effect of hypercubic corrections on quark renormalization constant, as a function of $a^2 p^{[2]}$. RHS: renormalization constants as a function of $a^2 p^{[2]}$, after removing H(4) artifacts.

- \blacksquare hypercubic artifacts that respect $H\left(4\right)$ but not $O\left(4\right)$
- \blacksquare artifacts that respect $O\left(4\right)$ will be treated NP by introducing corrections to the running
- egalitarian method (does not rely on the selection of diagonal momenta which have small H (4) artifacts like the method of democratic Cuts Boucaud et al (2003), de Soto et al (2007)
- keeps maximum amount of info- allows for the testing of the running of RCs

- \blacksquare hypercubic artifacts that respect $H\left(4\right)$ but not $O\left(4\right)$
- artifacts that respect O (4) will be treated NP by introducing corrections to the running
- egalitarian method (does not rely on the selection of diagonal momenta which have small H (4) artifacts like the method of democratic cuts Boucaud et al (2003), de Soto et al (2007)
- keeps maximum amount of info- allows for the testing of the running of RCs

- \blacksquare hypercubic artifacts that respect $H\left(4\right)$ but not $O\left(4\right)$
- artifacts that respect O (4) will be treated NP by introducing corrections to the running
- egalitarian method (does not rely on the selection of diagonal momenta which have small H (4) artifacts like the method of democratic cuts Boucaud et al (2003), de Soto et al (2007)
- keeps maximum amount of info- allows for the testing of the running of RCs

• we define the H(4) invariants

$$p^{[4]} = \sum_{\mu=1}^{4} p_{\mu}^{4}, \qquad p^{[6]} = \sum_{\mu=1}^{4} p_{\mu}^{6}, \qquad p^{[8]} = \sum_{\mu=1}^{4} p_{\mu}^{8}$$

Expand the RC already averaged over the cubic orbits around $p^{[4]}=0$

$$Z_{latt}(a^{2}p^{2}, a^{4}p^{[4]}, a^{6}p^{[6]}, ap_{4}, a^{2}\Lambda_{QCD}) = Z_{hypcorrected}(a^{2}p^{2}, ap_{4}, a^{2}\Lambda_{QCD}) + R(a^{2}p^{2}, a^{2}\Lambda_{QCD})\frac{a^{2}p^{[4]}}{p^{2}} + \dots$$

$$R(a^2p^2, a^2\Lambda_{QCD}) = \frac{dZ_{latt}(a^2p^2, 0, 0, 0, a^2\Lambda_{QCD})}{d\epsilon}|_{\epsilon=0} = c_{a2p4} + c_{a4p4}a^2p^2$$

• we define the H(4) invariants

. . .

 \blacksquare Expand the RC already averaged over the cubic orbits around $p^{[4]}=0$

$$Z_{latt}(a^2p^2, a^4p^{[4]}, a^6p^{[6]}, ap_4, a^2\Lambda_{QCD}) = Z_{hypcorrected}(a^2p^2, ap_4, a^2\Lambda_{QCD}) + R(a^2p^2, a^2\Lambda_{QCD})\frac{a^2p^{[4]}}{p^2} + C_{hypcorrected}(a^2p^2, ap_4, a^2\Lambda_{QCD}) + C_{hypcorrected}(a^2p^2, a^2\Lambda_{QCD}) + C_{hypc$$

$$R(a^2p^2, a^2\Lambda_{QCD}) = \frac{dZ_{latt}(a^2p^2, 0, 0, 0, a^2\Lambda_{QCD})}{d\epsilon}|_{\epsilon=0} = c_{a2p4} + c_{a4p4}a^2p^2$$

• we define the H(4) invariants

Expand the RC already averaged over the cubic orbits around $p^{[4]}=0$

$$Z_{latt}(a^2p^2, a^4p^{[4]}, a^6p^{[6]}, ap_4, a^2\Lambda_{QCD}) = Z_{hypcorrected}(a^2p^2, ap_4, a^2\Lambda_{QCD}) + R(a^2p^2, a^2\Lambda_{QCD}) \frac{a^2p^{[4]}}{p^2} + \dots$$

$$R(a^2p^2, a^2\Lambda_{QCD}) = \frac{dZ_{latt}(a^2p^2, 0, 0, 0, a^2\Lambda_{QCD})}{d\epsilon}|_{\epsilon=0} = c_{a2p4} + c_{a4p4}a^2p^2$$

 \blacksquare consider for the running of Z_q $_{\rm Blossier \ et \ al}$ (2010)

$$Z_q^{hyp-corr}(a^2p^2) = Z_q^{pert\,RI'}(\mu^2) c_{0Z_q}^{RI'}(\frac{p^2}{\mu^2}, \alpha(\mu)) \\ \times \left(1 + \frac{\langle A^2 \rangle_{\mu^2}}{32p^2} \frac{c_{2Z_q}^{\overline{\text{MS}}}(\frac{p^2}{\mu^2}, \alpha(\mu))}{c_{0Z_q}^{RI'}(\frac{p^2}{\mu^2}, \alpha(\mu))} \frac{c_{2Z_q}^{RI'}(\frac{p^2}{\mu^2}, \alpha(\mu))}{c_{2Z_q}^{\overline{\text{MS}}}(\frac{p^2}{\mu^2}, \alpha(\mu))} \right) \\ + c_{a2p2} a^2 p^2 + c_{a4p4} (a^2p^2)^2$$

- \blacksquare coefficients $c_{0Z_{q}}^{RI'}$ and $c_{2Z_{q}}^{\overline{\rm MS}}$ known from PT
- the running formula contains lattice artifact terms $\propto a^2p^2$ and $\propto (a^2p^2)^2$, not yet removed.
- \blacksquare need to determine, $Z_q^{pert\,RI'}(\mu^2)$, $\langle A^2\rangle_{\mu^2},\,c_{a2p2}$ and c_{a4p4}

 \blacksquare consider for the running of Z_q $_{\rm Blossier \ et \ al}$ (2010)

$$Z_q^{hyp-corr}(a^2p^2) = Z_q^{pert\,RI'}(\mu^2) c_{0Z_q}^{RI'}(\frac{p^2}{\mu^2}, \alpha(\mu)) \\ \times \left(1 + \frac{\langle A^2 \rangle_{\mu^2}}{32p^2} \frac{c_{2Z_q}^{\overline{\text{MS}}}(\frac{p^2}{\mu^2}, \alpha(\mu))}{c_{0Z_q}^{RI'}(\frac{p^2}{\mu^2}, \alpha(\mu))} \frac{c_{2Z_q}^{RI'}(\frac{p^2}{\mu^2}, \alpha(\mu))}{c_{2Z_q}^{\overline{\text{MS}}}(\frac{p^2}{\mu^2}, \alpha(\mu))} \right) \\ + c_{a2p2} a^2 p^2 + c_{a4p4} (a^2p^2)^2$$

- coefficients $c_{0Z_q}^{RI'}$ and $c_{2Z_q}^{\overline{\mathrm{MS}}}$ known from PT
- the running formula contains lattice artifact terms $\propto a^2p^2$ and $\propto (a^2p^2)^2$, not yet removed.
- \blacksquare need to determine, $Z_q^{pert\,RI'}(\mu^2)$, $\langle A^2\rangle_{\mu^2},\,c_{a2p2}$ and c_{a4p4}

 \blacksquare consider for the running of Z_q $_{\rm Blossier \ et \ al}$ (2010)

$$Z_q^{hyp-corr}(a^2p^2) = Z_q^{pert\,RI'}(\mu^2) c_{0Z_q}^{RI'}(\frac{p^2}{\mu^2}, \alpha(\mu)) \\ \times \left(1 + \frac{\langle A^2 \rangle_{\mu^2}}{32p^2} \frac{c_{2Z_q}^{\overline{\text{MS}}}(\frac{p^2}{\mu^2}, \alpha(\mu))}{c_{0Z_q}^{RI'}(\frac{p^2}{\mu^2}, \alpha(\mu))} \frac{c_{2Z_q}^{RI'}(\frac{p^2}{\mu^2}, \alpha(\mu))}{c_{2Z_q}^{\overline{\text{MS}}}(\frac{p^2}{\mu^2}, \alpha(\mu))} \right) \\ + c_{a2p2} a^2 p^2 + c_{a4p4} (a^2p^2)^2$$

- coefficients $c_{0Z_q}^{RI'}$ and $c_{2Z_q}^{\overline{\text{MS}}}$ known from PT
- the running formula contains lattice artifact terms $\propto a^2p^2$ and $\propto (a^2p^2)^2$, not yet removed.

 \blacksquare need to determine, $Z_q^{pert\,RI'}(\mu^2)$, $\langle A^2\rangle_{\mu^2}$, c_{a2p2} and c_{a4p4}

 \blacksquare consider for the running of Z_q $_{\rm Blossier \ et \ al}$ (2010)

$$Z_q^{hyp-corr}(a^2p^2) = Z_q^{pert\,RI'}(\mu^2) c_{0Z_q}^{RI'}(\frac{p^2}{\mu^2}, \alpha(\mu)) \\ \times \left(1 + \frac{\langle A^2 \rangle_{\mu^2}}{32p^2} \frac{c_{2Z_q}^{\overline{\text{MS}}}(\frac{p^2}{\mu^2}, \alpha(\mu))}{c_{0Z_q}^{RI'}(\frac{p^2}{\mu^2}, \alpha(\mu))} \frac{c_{2Z_q}^{RI'}(\frac{p^2}{\mu^2}, \alpha(\mu))}{c_{2Z_q}^{\overline{\text{MS}}}(\frac{p^2}{\mu^2}, \alpha(\mu))} \right) \\ + c_{a2p2} a^2 p^2 + c_{a4p4} (a^2p^2)^2$$

- coefficients $c_{0Z_q}^{RI'}$ and $c_{2Z_q}^{\overline{\text{MS}}}$ known from PT
- the running formula contains lattice artifact terms $\propto a^2p^2$ and $\propto (a^2p^2)^2$, not yet removed.

 \blacksquare need to determine, $Z_q^{pert\,RI'}(\mu^2)$, $\langle A^2\rangle_{\mu^2}$, c_{a2p2} and c_{a4p4}

Running of Z_q for ensemble 3mp ($\beta = 2.10$, $\mu = 0.0046$, volume $32^3.64$) using different fitting formulae.

Running of Z_S and Z_P

LHS: running of Z_S for ensemble 3mp ($\beta = 2.10$, $\mu = 0.0046$, volume $32^3.64$). The standard running formula is represented in solid blue line, the dashed cyan curve includes an $1/a^2p^2$ and an a^2p^2 term. This latter fit leads to $Z_S(10 \text{ GeV}) = 0.869(4)$. RHS: Running of Z_P with the standard running expression Chetyrkin et al (1999) (solid blue curve), and adding an $1/a^2p^2$ and an a^2p^2 terms (dashed cyan curve). The modified running gives $Z_P(10 \text{ GeV}) = 0.623(2)$.

Fits of the residual a^2p^2 dependence of Z_V and Z_A for ensemble 3mp ($\beta = 2.10, \mu = 0.0046$, volume $32^3.64$)

Chiral extrapolation and lattice spacing dependence

LHS: $N_f = 4$ local RCs dependence with the pion mass. The straight dashed lines are constant fits for each β values. The red points correspond to $\beta = 2.10$, the black ones to $\beta = 1.95$, and the blue ones to $\beta = 1.90$.

RHS: RCs after chiral extrapolation, vs $\log a^2$. All RCs follow a linear dependence with $\log a^2$ to a very high accuracy.

β	Z_q	Z_S	Z_P	Z_V	Z_A	Z_P/Z_S
1.90	0.767(3)	0.910(3)	0.543(3)	0.623(2)	0.717(1)	0.600(4)
1.95	0.775(2)	0.903(4)	0.576(2)	0.639(2)	0.726(2)	0.637(4)
2.10	0.791(2)	0.887(2)	0.639(1)	0.687(1)	0.755(1)	0.720(4)

converted our RI'-MOM results at 10 GeV to $\overline{\rm MS}$ values at a reference scale of 2 GeV leads to the final RCs

- \blacksquare Provided NP results for the RCs of $N_{\rm f}=2+1+1$ Twisted Mass QCD
- Hypercubic artifacts were taken correctly into account by the "egalitarian" method
- Complete the analysis of twist-2 operators
- Extend our work to the new ensembles of ETMC with the large volumes $48^3 \times 96$ and masses @ the physical point
- Check the effect of Gribov copies
- Perform the analysis using the RI-SMOM scheme

- \blacksquare Provided NP results for the RCs of $N_{\rm f}=2+1+1$ Twisted Mass QCD
- Hypercubic artifacts were taken correctly into account by the "egalitarian" method
- Complete the analysis of twist-2 operators
- Extend our work to the new ensembles of ETMC with the large volumes $48^3 \times 96$ and masses @ the physical point
- Check the effect of Gribov copies
- Perform the analysis using the RI-SMOM scheme

- \blacksquare Provided NP results for the RCs of $N_{\rm f}=2+1+1$ Twisted Mass QCD
- Hypercubic artifacts were taken correctly into account by the "egalitarian" method
- Complete the analysis of twist-2 operators
- Extend our work to the new ensembles of ETMC with the large volumes $48^3 \times 96$ and masses @ the physical point
- Check the effect of Gribov copies
- Perform the analysis using the RI-SMOM scheme

- \blacksquare Provided NP results for the RCs of $N_{\rm f}=2+1+1$ Twisted Mass QCD
- Hypercubic artifacts were taken correctly into account by the "egalitarian" method
- Complete the analysis of twist-2 operators
- Extend our work to the new ensembles of ETMC with the large volumes $48^3 \times 96$ and masses @ the physical point
- Check the effect of Gribov copies
- Perform the analysis using the RI-SMOM scheme

- \blacksquare Provided NP results for the RCs of $N_{\rm f}=2+1+1$ Twisted Mass QCD
- Hypercubic artifacts were taken correctly into account by the "egalitarian" method
- Complete the analysis of twist-2 operators
- Extend our work to the new ensembles of ETMC with the large volumes $48^3 \times 96$ and masses @ the physical point
- Check the effect of Gribov copies
- Perform the analysis using the RI-SMOM scheme

- \blacksquare Provided NP results for the RCs of $N_{\rm f}=2+1+1$ Twisted Mass QCD
- Hypercubic artifacts were taken correctly into account by the "egalitarian" method
- Complete the analysis of twist-2 operators
- Extend our work to the new ensembles of ETMC with the large volumes $48^3 \times 96$ and masses @ the physical point
- Check the effect of Gribov copies
- Perform the analysis using the RI-SMOM scheme

Stay Tuned!

for upcoming results ... Thank you for your attention!