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m SUSY is on of the most popular extensions of the Standard
Model (SM)

m SUSY connects inner and outer symmetries

m A SUSY-Generator () relates fermions and bosons:
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Q|Boson) = |Fermion)

m Solves hierarchy problem, gauge unification
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m SM fermions have scalars as superpartners
m There are two Higgs and two Higgsinos doublets
m They are arranged in left-chiral superfields:

name spin 0 spin 1/2 Q. N

Squarks, Quarks  Q | (ardy) | (updp) (3,2,%)
(3 families) a Up uk (3,1,-2)

d | dp dp | (313

Sleptons, Leptons L | (vég) (ver) |(1,2,-3)
(3 families) e & el 1,1,1)
Higgs, Higgsinos  H, | (H; HY) | (HS HY) | (1,2,3)
Hg | (HyHy) | (HJH;) | (1,2,-3)

Florian Staub 5/34



Julius-Maximilians- .
UNIVERSITAT Introduction
WURZBURG Supersymmetry and MSSM

Minimal Supersymmetric Standard Model: Particles Il

m Gauge bosons have fermions as superpartner, called gauginos

Florian Staub 6 /34




UNI\JIlEsRMgﬁ'IK; Introduction
WURZBURG Supersymmetry and MSSM
Minimal Supersymmetric Standard Model: Particles Il

m Gauge bosons have fermions as superpartner, called gauginos

m They are arranged in vector superfields

name spin 1/2 | spin1 Q.N.
Gluino, Gluon g g (8,1,0)
Winos, W Bosons | W= W9 | w+*w? | (1,3,0)
Bino, B Boson BY B (1,1,0)

Florian Staub j 6 /34



Julius-Maximilians-
UNIVERSITAT
WURZBURG

Introduction

Supersymmetry and MSSM

Minimal Supersymmetric Standard Model: Particles Il

They are arranged in vector superfields

name spin 1/2 | spin1 Q.N.
Gluino, Gluon g g (8,1,0)
Winos, W Bosons | W= W9 | w+*w? | (1,3,0)
Bino, B Boson BY B (1,1,0)

Gauge bosons have fermions as superpartner, called gauginos

m The particles in the previous tables are the so called gauge

eigenstates

Florian Staub k

This particles mix to the mass eigenstates, e.g. neutralinos,
charginos, light and heavy Higgs
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m The MSSM superpotential is
W =-YcLeH; — YqQdH, + Y QuH, + nHyH,

m Coupling of fermions/sfermions to gauginos

L = —V2g(¢* T WA — V2 Ao (W T0).

Relations between trilinear couplings

m Higgs-fermion-fermion- and Higgsino-fermion-sfermion-
couplings have same strength

m Sfermion-fermion-gaugino couplings are proportional to the
gauge couplings
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F- and D-Terms

m The superfields have auxiliary component fields F and D
m One part of the Lagrangian is

1 .
Laux — _—Depe + |F7,|2
29

m These fields don't propagate
— Can be eliminated with the equations of motion

F- and D-Terms

The quartic scalar couplings in SUSY are proportional to the
square of gauge and Yukawa couplings:

A= Y%+ cng
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Soft breaking Parameters

m No SUSY particles have been discovered so far

— SUSY must be a broken symmetry

m Add soft breaking parameters to the Lagrangian:
Gaugino masses M, scalar squared masses mf trilinear scalar
couplings h; = A;Y; and Higgs mixing parameter B.

m Many new parameters (105)

m Suppression of flavour changing and CP-violation has to be

explained
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m Embed the MSSM in a higher theory to get such relations

SUSY is broken in a hidden sector, the breaking is transmitted via
messenger particles

hidden sector: interaction visible sector:
SUSY-breaking — MSSM

m minimal Supergravity, Anomaly Mediated SUSY Breaking,
Gauge Mediated SUSY Breaking

m In mSugra, AMSB and GMSB you need only a few parameters
to fix your theory

m The nine SPS-Points describe common SUSY scenarios
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UV-Divergences

m Differenz between bare and physical parameters

— Lagrangian is a sum of renormalized parameters and
counter terms:

1 1
L= 5(aﬂ<1>,en)2—-m2 b2

2 ren —ren

m There are infinite possibilities to split your Lagrangian:
Lo = L(p) + AL(p)

v is called renormalization point

Florian Staub .
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UV-Divergences

m Differenz between bare and physical parameters

— Lagrangian is a sum of renormalized parameters and
counter terms:

1 1 1
L:i(aﬂren) eren¢36n+§5z(auq>,en) 5 Zd2 1

ren

m There are infinite possibilities to split your Lagrangian:
Lo = L(p) + AL(p)

v is called renormalization point
m Changing of ;1 changes your parameters

Physics must be independent of u

m Connection between i and your physical parameters are
described by the Renormalization Group (RG)
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m The RG describes the dependence of your system on the
energy probing it
m The Renormalization Group Equations (RGEs) described by
m (-function (Scaling of couplings):
dg
By = PJ%

m anomalous dimension « (Scaling of wave function):

0
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Renormalization Group Equation

m The RG describes the dependence of your system on the
energy probing it
m The Renormalization Group Equations (RGEs) described by
m (-function (Scaling of couplings):

0
By = p=

m anomalous dimension « (Scaling of wave function):

0
’Y@ZMa—Mln\/Z@

m anomalous mass dimension y,, (Scaling of masses):

m Can be calculated from the renormalization constants Z
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Decoupling Theorem

m SUSY RGEs run from GUT scale to EWSB scale
— Many mass thresholds are crossed

m Integrate out the heavy particles

exp(iSefr(¢)) = /d@ exp(iS(¢, D))

Decoupling Theorem

Corrections from particles with mass higher than energy are
suppressed by inverse powers of mass

m Every mass is a border between two different, effective theories

— Step Beta Approach: Use step functions ©, = O(u? —m?2)

xT
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Calculation of the SUSY-RGEs

Because of the thresholds:

m It's not possible to extract the RGEs of the cubic scalar
couplings, scalar squared masses, gaugino masses and mixing
parameters from the RGEs of the quartic couplings
(Martin/Vaughn, hep-ph/9311340)

m Also non-renormalization theorems can‘t be used
Example: Mass of the up-Squark:

dlium?"f - 161”2 (43/3 (mE O, +mEOa + (miy, +1*)Ou, +
AiOu,g 1 (On,0—205,)) -
—%2951\4395 - %Q?Mf% - gs -
- (3932'(@0 - ©05) + %gf(@l-] - GB)) m%)
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Everything alright?

Similar calculations have been done by Dedes et al. (hep-ph/9610271)
and Castano et al. (hep-ph/9308335) . Always the following relations
have been used

m Quartic couplings are proportional to Yukawa and gauge
couplings

m Sfermion-fermion-gaugino- couplings are proportional to the
gauge couplings

m Yukawa couplings with Higgs and their supersymmetric
partners are the same

That's right in SUSY, but what happens below the thresholds?
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Counter Example

Let's consider the coupling QQ*DD*. In SUSY is

d d
A=Y7+0(g*) — A =2a Yo+t O(g")

m Wave function renormalization of the Higgs Hy:
— The RGE of Y has a term proportional to Y, Y2
— Only leptons in the loop: No SUSY-Threshold

m The quartic coupling has a contribution ~ Y?Y,2? from

Q D
s
L\ 1 F

,,‘<\\
Q D

Florian Staub

17 / 34



URZBURG Independent Couplings

E{;\E}Mgﬁﬁ Renormalization Group Equations
uN,

Counter Example

Let's consider the coupling QQ*DD*. In SUSY is

d d
A=Y7+0(g*) — A =2a Yo+t O(g")

m Wave function renormalization of the Higgs Hy:
— The RGE of Y has a term proportional to Y, Y2
— Only leptons in the loop: No SUSY-Threshold

m The quartic coupling has a contribution ~ Y?Y,2? from

Q D
L \/;\/ E — SUSY-Thresholds!
Q D
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Scalar Quartic Couplings

m It could be wrong to use the relation between quartic
couplings and Yukawa/gauge couplings below a threshold

— You have to consider every quartic coupling as independent
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There could also arise new couplings below a threshold which
aren't possible in full MSSM, e.g. HiH;UU*
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It's the same with Yukawa couplings

m Counter example: Up-Yukawa coupling with Q or Q:
Wave function ~ Yd2: Loop with Hy, D or H;, D

m Below thresholds you have to distinguish between the
supersymmetric partners — 6 new Parameters

m Convention: The new couplings are named by the scalar
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Yukawa Couplings

It's the same with Yukawa couplings

m Counter example: Up-Yukawa coupling with Q or Q:
Wave function ~ YdQ: Loop with Hy, D or H;, D

m Below thresholds you have to distinguish between the
supersymmetric partners — 6 new Parameters

m Convention: The new couplings are named by the scalar
particle involved, e.g. Yu@

m Also the trilinear couplings proportional to puY are different

m Also the relation
hi = A;Y;

can't always be right
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Fermion-Sfermion-Gaugino Couplings

m The S-functions for gauge- or Gaugino-sfermion-fermion-
coupling are

B(g) =974 — B(d) =33 (1)

With the anomalous dimensions of Gluon and Gluino
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Fermion-Sfermion-Gaugino Couplings

m The S-functions for gauge- or Gaugino-sfermion-fermion-
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Summary

SM SEEEE U SUSY

energy

SUSY and SM only set the boundary conditions, but between both
you have to consider many different effective theories

Below the mass of the heaviest SUSY particle some SUSY
relations can be wrong

New set of RGEs: 82 instead of only 21 coupled equations
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@(y;) much farther away

— The product Q1Q)2 creates the most general local disturbance
in the vicinity of the point 0

Operator Product Expansion

The product of operators could be computed by replacing with a
linear combination

Q1(2)Q2(0) — Y Cfy(2)0n(0)

m The coefficients C are called Wilson coefficients

m The coefficients fullfill also an RGE: ‘fgfl’:g =~vC(p)
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In different SUSY breaking scenarios there are different heavy
SUSY particles:

m Anomaly Mediated SUSY Breaking:
The gauginos, esp. the gluino, much heavier than the scalars

— dimension 5 operators

m Focus Point (mSugra):
The scalars are heavier than the fermions

— dimension 4, 5 and 6 operators

— All effective operators and the running of the Wilson
coefficients for these scenarios were calculated
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Using

The effective operators and the Wilson coefficients could be used
for, e.g.

m Heavy gluino: Production of SUSY particles
99 — 4q°

m Heavy squark/Higgs:

m Squark decay
q— (H)Hq

m Corrections for quartic scalar couplings (dimension 4 operators)

— Contributions to SUSY masses and couplings
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m The third generation is the lightest one because of Yukawa
couplings
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Masses: General Results

In all scenarios (mSugra, GMSB, AMSB):

m The third generation is the lightest one because of Yukawa
couplings

— Will be detected first

m Squarks heavier than sleptons/Higgs because of strong
interaction

m The mass of H,, is getting negative at low energies: EWSB
m In all SPS-scenarios some particles lighter than 150 GeV
— Detectable at the LHC

m Different mass hierarchies: Can be used to favour/disfavour
high energy theory
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Running Gaugino Masses: GMSB (SPS 8)
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Effects of exact Decoupling
In many calculations all SUSY particles are integrated out at one
scale
m Multi scale decoupling changes the calculated masses of
squarks 0.5% - 2.0%
m Changes are sensitive to mg and M%, not so to tan 8
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Effects of exact Decoupling

In many calculations all SUSY particles are integrated out at one
scale

m Multi scale decoupling changes the calculated masses of
squarks 0.5% - 2.0%
m Changes are sensitive to mg and M1, not so to tan 3
2

m Example (SPS 2): light Higgs mass changes about 4.1%

Effect of decoupling will be measurable at the LHC!
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Effects of independent Couplings and Wilson Coefficients

SPS 2 one scale mulit scale 'exact couplings’
mg [GeV] 795.58 883.95 883.92
mz, [GeV]  971.33 987.33 987.52
mpo [GeV]  115.38 120.33 120.32

m Effects on masses always smaller than 0.3% in common
scenarios (SPS points)

— Differences in couplings are too small and running is too
short to change the masses significantly

Known and used RGEs could be considered as a good approximation
m Differences of couplings important for LHC-processes

Effects of independent couplings will be measurable at the ILC
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Summary

The dependence of the masses on the energy is described by
RGEs

The running of the masses is fixed by the high energy limit
you use as input

Below a mass threshold you get a new, effective theory by
integrating out the heavy particles

The effect of integrating out every particle by its mass instead
of integrating out all particles at one could be measurable at
the LHC for some scenarios

The effects of independent couplings and effective operators
are small and won’t be measurable at the LHC
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Superfields

m Chiral Superfields (Do = 9, + ic”,,0*%0,,)
Do®(2,0,0) =0 — &= A(z) + V20U (z) + O2F(z)
m Vector Superfields in Wess-Zumino-gauge:
V=Vl - V=-00'0"A,+i0%0\ - 0?0\ + %@2C:)2D

m Field Strength W, = D?DoV = Aa(z) + O0" Fly + 04D
m Lagrangian: Ly;, = [d'O Y, @Ievfbi,
Lyy = [ ?OW (®) + h.c., Lgauge = s [ dOWS
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F- and D-Terms

m Relevant Terms of the Lagrangian:

1
Lpp=FF+ 8WF + —D*D* + g(¢*T*¢) D" (2)
’ 0¢* 2g
m Euler Lagrange Formulas:
iaLF,D o iaLF’D . (3)
d 0F 7 dt 0D

m Equations of Motion:

D% = g*(®*T®) (4)
oW 1 ..
= = — Z']k ;
F 99 — 3V Pi%k (5)
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Derivation of the (-function

m Dimensional Reduction: gy = Zgu©
m [-function: % = B(g(n),€)
— B(g.€) = gou (= Z) = —eg — gup
m 4 dimensions: 3(g) = géln#
mExpand Z: Z =1+, }ka
w GdZdp(l+ 2+ G ) = =P =
L(g,) (% + 1422 + ... )

m coefficient comparison: 3(g) = 2¢° %% le

Florian Staub
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anomalous Dimensions

m Scalar wave function:
_Re2LE(m?)

) 1
m Counter term: §Z = %2

= C—
k2=m? €

m anomalous dimension:
Ysab = —C= 1oz (Tr(YaYb’f ) — 2g20(5)5ab)
m Mass renormalization:
sm? = Rell¥(m2), Zpy =1+ 5’”23, Y =
m Fermion wave function:

= Counter term §Z = —Rell}" (m7)
m anomalous dimension: same as scalar (Superfields!)

m Mass renormalization: dmp = %mpRe <H%1’F + QHUF"’S)

2dZ

m Vector wave function:

m Counter term: analog scalar
m anomalous dimension:

W =—1529° (FC(G) — 38(F) — 35(9))

Florian Staub 34 /34




Julius-Maximilians- A d.
UNIVERSITAT ppendix
WURZBURG RGEs

Beta functions without thresholds

m Gauge coupling: 3, = gyv
= Yukawa coupling: fy = 15— (%(Yg(F)Ya + Y. Yo(F))+
YR Yal Yy + 2V Tr(Y Ya) — 69202(F)Ya>
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Method with dummy fields

m Superpotential:
1 s 1 .
W = gyw’fqn@j@k + 17 Bi®;. (6)
m Quartic Couplings:

m Softbreaking parameters:

1, 1, 1 1
Lsp = —éhw%@jm—ib%@j—§(m2)g¢>*’¢j—§MM+h.c..

(8)
m Dummy fields:
MIWT; = ¢qV7 0,0, (9)
(m*)]67'6; = Pa 60Xy, 4,007 05 (10)
Wkigion = GaN]" dididn (11)
© Florian Staub 34/ 34
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Example: SM Yukawa Coupling
Steps to get the 1-Loop RGE in O(g?)
m Calculate the diagrams and their symmetric counterparts

m Extract the renormalization constants

\Ilzn — Z\IILWFGH .. YIJnW \Ilunq)un Zcoup}/renq}ren\llgnq)ren

Zcoup

m Renormalization: Yy, = ZyYien = NPT Yien
vy YR
m The 1-Loop (-function is By = mZeren

m The result is By = <Z§02,p ~1 (Z(l) + 29 + 28 )>> Yien
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Famous Example
Fermi's theory of electroweak interaction:
m Let's consider ¢ — sud, for M‘%V > k2

m effective 4-fermion-interaction

Q =5Vu(1 = y5)cuyu(l — v5)d
m C' is the effective coupling constant for the 4-fermion-vertex b
m At 1-loop-level two operators possible:
Q1 = (5acs)v-a(Upda)v—a,Q2 = (Saca)v-a(Usdg)v-a
m The full and effective amplitude is

2
GF *V _(?(’,\V, a(ud), 4 (13)
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5d Operators for heavy Gluon

m Tree-Level-Amplitude:
i 1
MTee = ATree K Tree With ATree = 3, KTree = 203-

m One Loop diagrams
AN 7 \ ,/ AN o AN /s
/A/\ \'Q’/V N § g NV
a) b) /\ ) d

m 1-Loop contributions: M =AY K; - A;, A =

m Amplitudes A;: A1 = _871r (B(1 — v5)u),
Ay = 55 (0(1 — y5)u), Az = 552 (0(1 — y5)u)

N ~—

€
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a 70 g Y]
to 30 — 1 1,

m Coefficients K;:

Graph K A
a) Ki= 2639230005y — Sapdys)  Ai
Ks= 953 BaxsOvs — 30a50+) Ay
b) Ky = 77939 2(360605y — 003045) Ay
K3 = —03(30ap0ys — ééagéw) As
<) K = _%9/29?%(5045567 - 0ys) As
K3 = —293(5000608y + 250a80y5) As
d) K= —29763(as0s — 575) As
Ks = —2g3(750a508y + 366a55 5) Az

m Operators:

Si= (P -

N~——+~7

(#51). 8= (1= )i3) (i)

Florian Staub E

34 /34



Julius-Maximilians- A d.

I UNIVERSITAT ppendix

WURZBURG Fermi‘s Theory
Anomalous Dimensions

m Renormalization constant

Zo1s2 ( —L (3.2 a1 +20a3) —g (5201 + 1803) >
e\ —515 (5-2-on +18a3) —25 (32 ay +26a3)
m Diagonalization: Si2+ = %
m anomalous dimensions:
Y Sto,+ S12,—
73 9%0@, g%ozg

M Bm 5 M o T F

34 /34
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Fermi's Theory: 1-Loop-Corrections

m There are two operators with different colour structures
S1 = (Sacg)v-a(Usda)v-a,S2 = (Saca)v-a(Updg)v-a
Colour algebra: T5,T45 = — 55003015 + 305013

Mixing of Operators at 1-Loop-Level: Q; = ¢;151 + ¢; 252
Renormalization constant: 2 x 2-matrix in (Q1, Q2)
Diagonalization: Q+ = %, Cy=0CoxCq

Renormalization constants: Zy =1+ Z—;% (:FB%)

. . 2
anomalous Dimensions: v4(g) = i;ﬁi = Z‘—ﬂ(iﬁ%)

Running:
P = 44 (9)Ce (i) — Cralp) = 3(Cy (1) F C— (1)
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Scalar quartic couplings

The gluino is integrated out:

Y2y YR (16 20y)
— After integration out the gluino: ~ Y2 — Y442
d\Y 2 32 21

— After integration out the gluino: ~ Y? — Y%gg
— Decreases more for larger >

%Afm ~Y2-Y3242(L(1+0y)

— After integration out the gluino: ~ Y2 — Y142

— Contributions of strong interaction small: Effect of Yukawa
couplings dominates

— Increases for larger 2
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Scalar quartic couplings Il

m The gluino is integrated out: No gluino tresholds for all three
couplings
— Indirect effect, because other quartic couplings don't
cancel exactly

m D is integrated out: Big effect on Y, _
H,U

m Q is integrated out: Evolution of couplings with @ as outer
particle stops
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Independent Yukawa couplings

Qis integrated out:

m Y, u,: Integrating out the Q changes wave function
renormalizaton of U
— larger decreasing for larger 2 because of gauge couplings

m Y, 7 Integrating out the Q changes wave function
renormalization of ﬁu — Reduces contributions of Yukawa
couplings
But gluino exchange betwenn @ and U not longer possible —
Dominating effect — Contributions of Yukawa coupling bigger

than contributions of gauge couplings — Increasing for larger

12

| YUQ: constant, because an external field is integrated out
Integrating out U:
m Y, ;7 Stops

L] YUH Small bend — larger decreasmg
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Independent gauge couplings

m Anomalous dimenions of gluon and gluino:

N,

Vg = —T+20s+ ézg (2@@_ + @Iji + G)Ui) (15)
i=1
1 o

15 = —3(30;-c> (200,+05,+6p,) | (16)
1=1

m Integrating out a squark changes the value of -3:

m Gluon: —3%
m Gluino: —3%

— larger slope of the gaugino coupling
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GUT Masses

m mSugra:

mg} == mg, Mg=---= M%
m AMSB :

1 dyi B(g*)
2 2
= M =
i ddlnp 3 AT Tog2 ms

= GMSB:

2 2
m?(MmeSS) = 2NmessAzzC (16 2)

92

Ma(MmeSS) = NmessAW
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Running Masses: mSugra (SPS 2) Il

Appendix

Independent couplings

C T T ]
9,5¢+05 [z . . _
— L 2 i
~ m
% 9.4e+05 |- Ha —
o i 1
= L |
S - — ]
9,3e+05 |
92e+051- | L —
le+06 le+07
1? [GeV?]
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