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Introduction
Supersymmetry and MSSM

Supersymmetry

SUSY is on of the most popular extensions of the Standard
Model (SM)

SUSY connects inner and outer symmetries

A SUSY-Generator Q relates fermions and bosons:

Q|Fermion〉 = |Boson〉
Q|Boson〉 = |Fermion〉

Solves hierarchy problem, gauge unification
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Introduction
Supersymmetry and MSSM

Minimal Supersymmetric Standard Model: Particles

SM fermions have scalars as superpartners

There are two Higgs and two Higgsinos doublets

They are arranged in left-chiral superfields:

name spin 0 spin 1/2 Q. N.

Squarks, Quarks Q (ũL d̃L) (uL dL) (3, 2, 1
6)

(3 families) ū ũ∗R u†R (3̄, 1,−2
3)

d̄ d̃∗R d†R (3̄, 1, 1
3)

Sleptons, Leptons L (ν̃ ẽL) (ν eL) (1, 2,−1
2)

(3 families) ē ẽ∗R e†R (1̄, 1, 1)

Higgs, Higgsinos Hu (H+
u H

0
u) (H̃+

u H̃
0
u) (1, 2, 1

2)

Hd (H0
d H

−
d ) (H̃0

d H̃
−
d ) (1, 2,−1

2)
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Squarks, Quarks Q (ũL d̃L) (uL dL) (3, 2, 1
6)
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Introduction
Supersymmetry and MSSM

Minimal Supersymmetric Standard Model: Particles II

Gauge bosons have fermions as superpartner, called gauginos

They are arranged in vector superfields

name spin 1/2 spin 1 Q.N.

Gluino, Gluon g̃ g (8, 1, 0)

Winos, W Bosons W̃± W̃ 0 W±W 0 (1, 3, 0)

Bino, B Boson B̃0 B0 (1, 1, 0)

The particles in the previous tables are the so called gauge
eigenstates

This particles mix to the mass eigenstates, e.g. neutralinos,
charginos, light and heavy Higgs
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Introduction
Lagrangian

Lagrangian

The MSSM superpotential is

W = −YeLēHd −YdQd̄Hd + YuQūHu + µHdHu

Coupling of fermions/sfermions to gauginos

L = −
√

2g(φ∗T aΨ)λa −
√

2gλ†a(Ψ†T aφ).

Relations between trilinear couplings

Higgs-fermion-fermion- and Higgsino-fermion-sfermion-
couplings have same strength

Sfermion-fermion-gaugino couplings are proportional to the
gauge couplings
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Introduction
Lagrangian

F- and D-Terms

The superfields have auxiliary component fields F and D

One part of the Lagrangian is

Laux =
1
2g
DaDa + |F i|2

These fields don’t propagate

→ Can be eliminated with the equations of motion

F- and D-Terms

The quartic scalar couplings in SUSY are proportional to the
square of gauge and Yukawa couplings:

λ = c1Y
2 + c2g

2
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Introduction
SUSY-Breaking

Soft breaking Parameters

No SUSY particles have been discovered so far

→ SUSY must be a broken symmetry

Add soft breaking parameters to the Lagrangian:
Gaugino masses Ma, scalar squared masses m2

i , trilinear scalar
couplings hi = AiYi and Higgs mixing parameter B.

Many new parameters (105)

Suppression of flavour changing and CP-violation has to be
explained
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Introduction
SUSY-Breaking

Organizing Principle

Embed the MSSM in a higher theory to get such relations

Idea

SUSY is broken in a hidden sector, the breaking is transmitted via
messenger particles

hidden sector:
SUSY-breaking

interaction
←→

visible sector:
MSSM

minimal Supergravity, Anomaly Mediated SUSY Breaking,
Gauge Mediated SUSY Breaking

In mSugra, AMSB and GMSB you need only a few parameters
to fix your theory

The nine SPS-Points describe common SUSY scenarios
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Introduction
Renormalization and Renormalization Group

UV-Divergences

Differenz between bare and physical parameters

→ Lagrangian is a sum of renormalized parameters and
counter terms:

L =
1
2

(∂µΦren)2−1
2
m2

renΦ2
ren+

1
2
δZ(∂µΦren)2−1

2
δmZΦ2

ren+. . .

There are infinite possibilities to split your Lagrangian:

L0 = L(µ) + ∆L(µ)

µ is called renormalization point

Changing of µ changes your parameters

Physics must be independent of µ

Connection between µ and your physical parameters are
described by the Renormalization Group (RG)

Florian Staub 11 / 34



Introduction
Renormalization and Renormalization Group

UV-Divergences

Differenz between bare and physical parameters

→ Lagrangian is a sum of renormalized parameters and
counter terms:

L =
1
2

(∂µΦren)2−1
2
m2

renΦ2
ren+

1
2
δZ(∂µΦren)2−1

2
δmZΦ2

ren+. . .

There are infinite possibilities to split your Lagrangian:

L0 = L(µ) + ∆L(µ)

µ is called renormalization point

Changing of µ changes your parameters

Physics must be independent of µ

Connection between µ and your physical parameters are
described by the Renormalization Group (RG)

Florian Staub 11 / 34



Introduction
Renormalization and Renormalization Group

UV-Divergences

Differenz between bare and physical parameters

→ Lagrangian is a sum of renormalized parameters and
counter terms:

L =
1
2

(∂µΦren)2−1
2
m2

renΦ2
ren+

1
2
δZ(∂µΦren)2−1

2
δmZΦ2

ren+. . .

There are infinite possibilities to split your Lagrangian:

L0 = L(µ) + ∆L(µ)

µ is called renormalization point

Changing of µ changes your parameters

Physics must be independent of µ

Connection between µ and your physical parameters are
described by the Renormalization Group (RG)

Florian Staub 11 / 34



Introduction
Renormalization and Renormalization Group

UV-Divergences

Differenz between bare and physical parameters

→ Lagrangian is a sum of renormalized parameters and
counter terms:

L =
1
2

(∂µΦren)2−1
2
m2

renΦ2
ren+

1
2
δZ(∂µΦren)2−1

2
δmZΦ2

ren+. . .

There are infinite possibilities to split your Lagrangian:

L0 = L(µ) + ∆L(µ)

µ is called renormalization point

Changing of µ changes your parameters

Physics must be independent of µ

Connection between µ and your physical parameters are
described by the Renormalization Group (RG)

Florian Staub 11 / 34



Introduction
Renormalization and Renormalization Group

UV-Divergences

Differenz between bare and physical parameters

→ Lagrangian is a sum of renormalized parameters and
counter terms:

L =
1
2

(∂µΦren)2−1
2
m2

renΦ2
ren+

1
2
δZ(∂µΦren)2−1

2
δmZΦ2

ren+. . .

There are infinite possibilities to split your Lagrangian:

L0 = L(µ) + ∆L(µ)

µ is called renormalization point

Changing of µ changes your parameters

Physics must be independent of µ

Connection between µ and your physical parameters are
described by the Renormalization Group (RG)

Florian Staub 11 / 34



Introduction
Renormalization and Renormalization Group

UV-Divergences

Differenz between bare and physical parameters

→ Lagrangian is a sum of renormalized parameters and
counter terms:

L =
1
2

(∂µΦren)2−1
2
m2

renΦ2
ren+

1
2
δZ(∂µΦren)2−1

2
δmZΦ2

ren+. . .

There are infinite possibilities to split your Lagrangian:

L0 = L(µ) + ∆L(µ)

µ is called renormalization point

Changing of µ changes your parameters

Physics must be independent of µ

Connection between µ and your physical parameters are
described by the Renormalization Group (RG)

Florian Staub 11 / 34



Introduction
Renormalization and Renormalization Group

Renormalization Group Equation
The RG describes the dependence of your system on the
energy probing it

The Renormalization Group Equations (RGEs) described by

β-function (Scaling of couplings):

βg = µ
∂g

∂µ

anomalous dimension γ (Scaling of wave function):

γΦ = µ
∂

∂µ
ln
√
ZΦ

anomalous mass dimension γm (Scaling of masses):

mγm = µ
∂m

∂µ

Can be calculated from the renormalization constants Z
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Renormalization Group Equations

SUSY RGEs
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Renormalization Group Equations
Decoupling and Thresholds

Decoupling Theorem

SUSY RGEs run from GUT scale to EWSB scale

→ Many mass thresholds are crossed

Integrate out the heavy particles

exp(iSeff(φ)) =
∫
dΦ exp(iS(φ,Φ))

Decoupling Theorem

Corrections from particles with mass higher than energy are
suppressed by inverse powers of mass

Every mass is a border between two different, effective theories

→ Step Beta Approach: Use step functions Θx = Θ(µ2−m2
x)
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Renormalization Group Equations
SUSY-RGEs

Calculation of the SUSY-RGEs
Because of the thresholds:

It‘s not possible to extract the RGEs of the cubic scalar
couplings, scalar squared masses, gaugino masses and mixing
parameters from the RGEs of the quartic couplings
(Martin/Vaughn, hep-ph/9311340)

Also non-renormalization theorems can‘t be used
Example: Mass of the up-Squark:

d

d lnµ
m2
Ũ

=
1

16π2

 
4Y 2
u (m2

Ũ
ΘH̃u

+m2
Q̃

ΘQ̃ + (m2
Hu

+ µ2)ΘHu +

A2
uΘHuQ̃

+ µ2(ΘHdQ̃
− 2ΘH̃u

))−

−
32

3
g2
3M

2
3 Θg̃ −

32

15
g2
1M

2
1 ΘB̃ −

4

5
S −

−
„

4

3
g2
3(ΘŨ −Θg̃) +

16

15
g2
1(ΘŨ −ΘB̃)

«
m2
Ũ

!
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Also non-renormalization theorems can‘t be used

Example: Mass of the up-Squark:
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Renormalization Group Equations
Independent Couplings

Everything alright?

Similar calculations have been done by Dedes et al. (hep-ph/9610271)

and Castano et al. (hep-ph/9308335) . Always the following relations
have been used

Quartic couplings are proportional to Yukawa and gauge
couplings

Sfermion-fermion-gaugino- couplings are proportional to the
gauge couplings

Yukawa couplings with Higgs and their supersymmetric
partners are the same

That’s right in SUSY, but what happens below the thresholds?
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Renormalization Group Equations
Independent Couplings

Counter Example

Let’s consider the coupling Q̃Q̃∗D̃D̃∗.

In SUSY is

λ = Y 2
d +O(g2)→ d

dt
λ = 2Yd

d

dt
Yd +O(g4)

Wave function renormalization of the Higgs Hd:
→ The RGE of Yd has a term proportional to YdY

2
e

→ Only leptons in the loop: No SUSY-Threshold

The quartic coupling has a contribution ∼ Y 2
d Y

2
e from

L̃ Ẽ

Q̃ D̃

Q̃ D̃

→ SUSY-Thresholds!
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Renormalization Group Equations
Independent Couplings

Scalar Quartic Couplings

It could be wrong to use the relation between quartic
couplings and Yukawa/gauge couplings below a threshold

→ You have to consider every quartic coupling as independent
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Renormalization Group Equations
Independent Couplings

Numerical results: New couplings (SPS 1)

There could also arise new couplings below a threshold which
aren’t possible in full MSSM, e.g. HdH

∗
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Renormalization Group Equations
Independent Couplings

Yukawa Couplings

It’s the same with Yukawa couplings

Counter example: Up-Yukawa coupling with Q or Q̃:

Wave function ∼ Y 2
d : Loop with Hd, D or H̃d, D

Below thresholds you have to distinguish between the
supersymmetric partners → 6 new Parameters

Convention: The new couplings are named by the scalar
particle involved, e.g. Yu,Q̃
Also the trilinear couplings proportional to µY are different

Also the relation
hi = AiYi

can’t always be right

Florian Staub 20 / 34
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Renormalization Group Equations
Independent Couplings

Fermion-Sfermion-Gaugino Couplings

The β-functions for gauge- or Gaugino-sfermion-fermion-
coupling are

β(g) = gγg → β(g′) = g′γg̃ (1)

With the anomalous dimensions of Gluon and Gluino

→ γg and γg̃ differ after integrating out squarks

There could also arise contribu-
tions proportional to Yukawa cou-
plings: Also spoils eq. (1)

H̃u

Ũ

U

g̃

Q

Q̃
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Renormalization Group Equations
Independent Couplings

Numerical Results (SPS 2)
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Numerical Results (SPS 2)
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Summary

-p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p
energy

SM ? SUSY

SUSY and SM only set the boundary conditions, but between both
you have to consider many different effective theories

Below the mass of the heaviest SUSY particle some SUSY
relations can be wrong

New set of RGEs: 82 instead of only 21 coupled equations
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Operator Product Expansion
Introduction

Local Operators and Wilson Coefficients
Consider two operators Q1(0) and Q2(x) with x small and fields
φ(yi) much farther away

→ The product Q1Q2 creates the most general local disturbance
in the vicinity of the point 0

Operator Product Expansion

The product of operators could be computed by replacing with a
linear combination

Q1(x)Q2(0)→
∑
n

Cn12(x)On(0)

The coefficients C are called Wilson coefficients
The coefficients fullfill also an RGE: dC(µ)

d lnµ = γC(µ)
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Operator Product Expansion
Heavy SUSY-Particles

Heavy SUSY-Particles

In different SUSY breaking scenarios there are different heavy
SUSY particles:

Anomaly Mediated SUSY Breaking:
The gauginos, esp. the gluino, much heavier than the scalars

→ dimension 5 operators

Focus Point (mSugra):
The scalars are heavier than the fermions

→ dimension 4, 5 and 6 operators

→ All effective operators and the running of the Wilson
coefficients for these scenarios were calculated
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Operator Product Expansion
Heavy SUSY-Particles

Using

The effective operators and the Wilson coefficients could be used
for, e.g.

Heavy gluino: Production of SUSY particles

qq → q̃q̃∗

Heavy squark/Higgs:

Squark decay
q̃ → 〈H〉H̃q

Corrections for quartic scalar couplings (dimension 4 operators)

→ Contributions to SUSY masses and couplings
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Results
Running of Masses

Masses: General Results

In all scenarios (mSugra, GMSB, AMSB):

The third generation is the lightest one because of Yukawa
couplings

→ Will be detected first

Squarks heavier than sleptons/Higgs because of strong
interaction

The mass of Hu is getting negative at low energies: EWSB

In all SPS-scenarios some particles lighter than 150 GeV

→ Detectable at the LHC

Different mass hierarchies: Can be used to favour/disfavour
high energy theory
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Results
Running of Masses

Running Scalar Masses: mSugra (SPS 2) I
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Results
Running of Masses

Running Gaugino Masses: GMSB (SPS 8)
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Results
Corrections

Effects of exact Decoupling
In many calculations all SUSY particles are integrated out at one
scale

Multi scale decoupling changes the calculated masses of
squarks 0.5% - 2.0%

Changes are sensitive to m0 and M 1
2

, not so to tanβ

Example (SPS 2): light Higgs mass changes about 4.1%

Effect of decoupling will be measurable at the LHC!
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Results
Corrections

Effects of independent Couplings and Wilson Coefficients

SPS 2 one scale mulit scale ’exact couplings’

mg̃ [GeV] 795.58 883.95 883.92

mt̃1
[GeV] 971.33 987.33 987.52

mh0 [GeV] 115.38 120.33 120.32

Effects on masses always smaller than 0.3% in common
scenarios (SPS points)

→ Differences in couplings are too small and running is too
short to change the masses significantly

Known and used RGEs could be considered as a good approximation

Differences of couplings important for LHC-processes

Effects of independent couplings will be measurable at the ILC
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Results
Summary

Summary

The dependence of the masses on the energy is described by
RGEs

The running of the masses is fixed by the high energy limit
you use as input

Below a mass threshold you get a new, effective theory by
integrating out the heavy particles

The effect of integrating out every particle by its mass instead
of integrating out all particles at one could be measurable at
the LHC for some scenarios

The effects of independent couplings and effective operators
are small and won’t be measurable at the LHC
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Appendix
SUSY

Superfields

Chiral Superfields (Dα = ∂α + iσµαα̇Θ∗α̇∂µ)

DαΦ(x,Θ, Θ̄) = 0 → Φ = A(x) +
√

2ΘΨ(x) + Θ2F (x)

Vector Superfields in Wess-Zumino-gauge:

V = V † → V = −ΘσµΘ∗Aµ + iΘ2Θ̄λ̄− iΘ̄2Θλ+
1
2

Θ2Θ̄2D

Field Strength Wα = D̄2DαV = λα(x) + ΘσµνFµν + ΘαD

Lagrangian: Lkin =
∫
d4Θ

∑
i Φ†ie

V Φi,

LW =
∫
d2ΘW (Φ) + h.c., Lgauge = 1

g(i)2

∫
d2ΘW (i)2

α
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Appendix
SUSY

F- and D-Terms

Relevant Terms of the Lagrangian:

LF,D = F ∗F +
∂W

∂φi
F +

1
2g
DaDa + g(φ∗T aφ)Da (2)

Euler Lagrange Formulas:

d

dt

∂LF,D

∂F
= 0,

d

dt

∂LF,D

∂D
= 0 (3)

Equations of Motion:

Da = g2(Φ∗T aΦ) (4)

F =
∂W

∂Φi
=

1
2
yijkφjφk (5)
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Appendix
RGEs

Derivation of the β-function

Dimensional Reduction: g0 = Zgµε

β-function: dg(µ)
d lnµ = β(g(µ), ε)

→ β(g, ε) = g0µ
d
dµ(µ−εZ−1) = −εg − gµ 1

Z
dZ
dµ

4 dimensions: β(g) = −g 1
Z
dZ
lnµ

Expand Z: Z = 1 +
∑

k
1
εk
Zk

µ
Z dZdµ(1 + Z1

ε + Z2
ε2

+ . . . ) = µdZdµ = µ dgdµ
dZ
dg =

1
εβ(g, ε)

(
dZ1
dg + 1

ε
dZ2
dg + . . .

)
coefficient comparison: β(g) = 2g3 dZ1

dg2
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Appendix
RGEs

anomalous Dimensions

Scalar wave function:
Counter term: δZ = −Re

∂Πun
S (m2)
∂k2

∣∣∣
k2=m2

= c 1
ε

anomalous dimension:
γS,ab = −c = 1

16π2

(
Tr(YaYb

†)− 2g2C(S)δab
)

Mass renormalization:
δm2 = ReΠun

S (m2
S), Zm = 1 + δm2

S

m2
S
, γm = −2g2 dZm

dg2

Fermion wave function:
Counter term δZ = −ReΠun

F (m2
f )

anomalous dimension: same as scalar (Superfields!)

Mass renormalization: δmF = 1
2mFRe

(
Πun,F
F + 2Πun,S

F

)
Vector wave function:

Counter term: analog scalar
anomalous dimension:
γV = − 1

16π2 g
2
(

11
3 C(G)− 2

3S(F )− 1
3S(S)

)
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Appendix
RGEs

Beta functions without thresholds

Gauge coupling: βg = gγV

Yukawa coupling: βY = 1
16π2

(
1
2(Y†2(F )Ya + YaY2(F ))+

+2YbYa
†Yb + 2YbTr(Yb

†Ya)− 6g2C2(F )Ya

)
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Appendix
RGEs

Method with dummy fields
Superpotential:

W =
1
6
Y ijkΦiΦjΦk +

1
2
µijΦiΦj . (6)

Quartic Couplings:

λklij = YijmY
klm + g2(TAki TAlj + TAkj TAli ) (7)

Softbreaking parameters:

LSB = −1
6
hijkφiφjφk−1

2
bijφiφj−1

2
(m2)jiφ

∗iφj−1
2
Mλλ+h.c..

(8)
Dummy fields:

M ijΨiΨj = φdY
ij
d ΨiΨj (9)

(m2)jiφ
∗iφj = φd1φd2λ

j
d1d2i

φ∗iφj (10)

hijkφiφjφk = φdλ
ijk
d φiφjφk (11)

bijφiφj = φd1φd2λ
ij
d1d2

φiφj . (12)Florian Staub 34 / 34



Appendix
RGEs

Example: SM Yukawa Coupling
Steps to get the 1-Loop RGE in O(g2)

Calculate the diagrams and their symmetric counterparts

Extract the renormalization constants

Ψun
L =

√
ZΨLΨren

L , . . . , YunΨ̄un
L Ψun

R Φun = ZcoupYrenΨ̄ren
L Ψren

R Φren

Renormalization: Yun = ZY Yren = Zcoup√
ZΨL

√
ZΨR

√
ZΦ
Yren

The 1-Loop β-function is βY = d
d( 1

ε )
ZY Yren

The result is βY =
(
Z

(1)
coup − 1

2

(
Z

(1)
ΨL

+ Z
(1)
ΨR

+ Z
(1)
Φ

))
Yren
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Appendix
Fermi‘s Theory

Famous Example
Fermi’s theory of electroweak interaction:

Let’s consider c→ sud, for M2
W � k2

W

c s

d u

→

c s

d u

effective 4-fermion-interaction

Q = sγµ(1− γ5)c uγµ(1− γ5)d

C is the effective coupling constant for the 4-fermion-vertex b
At 1-loop-level two operators possible:
Q1 = (sαcβ)V−A(uβdα)V−A, Q2 = (sαcα)V−A(uβdβ)V−A
The full and effective amplitude is

Afull = −GF√
2
V ∗csVud

M2
W

k2 −M2
W

(sc)V−A(ud)V−A (13)

Aeff =
GF√

2
V ∗csVud(sc)V−A(ud)V−A + O

(
k2

M2
W

)
(14)

with (sc) = sγµ(1− γ5)c
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Appendix
Fermi‘s Theory

5d Operators for heavy Gluon

Tree-Level-Amplitude:
MTree = ATreeKTree with ATree = 1

2 ,KTree = 2g2
3.

One Loop diagrams

a) b) c) d)

1-Loop contributions: M = ∆
∑

iKi ·Ai, ∆ = 2
ε

Amplitudes Ai: A1 = − 1
8π2 (v̄(1− γ5)u),

A2 = 1
32π2 (v̄(1− γ5)u), A3 = 1

32π2 (v̄(1− γ5)u)
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Appendix
Fermi‘s Theory

tαL t̃
∗β
L → t̄γR t̃

δ
R

Coefficients Ki:

Graph K A

a) K1 = 1
27
g2

3g
′2(3δαδδβγ − δαβδγδ) A1

K3 = g4
3( 5

9
δαβδγδ − 1

3
δαδδγβ) A1

b) K1 = 1
27
g2

3g
′2(3δαδδβγ − δαβδγδ) A2

K3 = −g4
3( 5

9
δαβδγδ − 1

3
δαδδγβ) A2

c) K1 = − 2
9
g

′2g2
3(δαδδβγ − 1

3
δαβδγδ) A3

K3 = −2g4
3( 7

12
δαδδβγ + 1

36
δαβδγδ) A3

d) K1 = − 2
9
g

′2g2
3(δαδδβγ − 1

3
δαβδγδ) A3

K3 = −2g4
3( 7

12
δαδδβγ + 1

36
δαβδγδ) A3

Operators:

S1 =
(
t̄β(1− γ5)t̃βR

) (
t̃αLt

α
)
, S2 =

(
t̄α(1− γ5)t̃βR

)(
t̃βLt

α
)
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Appendix
Fermi‘s Theory

Anomalous Dimensions

Renormalization constant

Z = 1+
2
επ

(
− 1

72

(
3 · 3

5 · α1 + 26α3

) − 1
216

(
5 · 3

5 · α1 + 18α3

)
− 1

216

(
5 · 3

5 · α1 + 18α3

) − 1
72

(
3 · 3

5 · α1 + 26α3

) ) .
Diagonalization: S12,± = S1±S2

2

anomalous dimensions:

γ S12,+ S12,−

γ3
8

9πα3
5

9πα3

γ1
7

54π · 3
5 · α1

1
27π · 3

5 · α1

Florian Staub 34 / 34



Appendix
Fermi‘s Theory

Fermi’s Theory: 1-Loop-Corrections

There are two operators with different colour structures
S1 = (sαcβ)V−A(uβdα)V−A, S2 = (sαcα)V−A(uβdβ)V−A
Colour algebra: T aαβT

a
γδ = − 1

2N δαβδγδ + 1
2δαδδγβ

Mixing of Operators at 1-Loop-Level: Qi = ci,1S1 + ci,2S2

Renormalization constant: 2× 2-matrix in (Q1, Q2)
Diagonalization: Q± = Q2±Q1

2 , C± = C2 ± C1

Renormalization constants: Z± = 1 + α3
4π

1
ε

(∓3N±1
N

)
anomalous Dimensions: γ±(g) = 1

Z±
dZ±
d lnµ = α2

4π (±6N∓1
N )

Running:
dC±(µ)
d lnµ = γ±(g)C±(µ) → C1,2(µ) = 1

2(C+(µ)∓ C−(µ))
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Appendix
Independent couplings

Scalar quartic couplings

The gluino is integrated out:

d
dtY

2
u ∼ Y 2 − Y 32

3 g
2
3

(
1
4(6− 2Θg̃)

)
→ After integration out the gluino: ∼ Y 2 − Y 48

3 g
2
3

d
dtλ

Y
Q̃Ũ
∼ Y 2 − Y 32

3 g
2
3

(
1
32(−32Θg̃ + 64)

)
→ After integration out the gluino: ∼ Y 2 − Y 64

3 g
2
3

→ Decreases more for larger µ2

d
dtλ

Y
HuŨ

∼ Y 2 − Y 32
3 g

2
3

(
1
2(1 + Θg̃)

)
→ After integration out the gluino: ∼ Y 2 − Y 16

3 g
2
3

→ Contributions of strong interaction small: Effect of Yukawa
couplings dominates
→ Increases for larger µ2
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Appendix
Independent couplings

Scalar quartic couplings II

The gluino is integrated out: No gluino tresholds for all three
couplings
→ Indirect effect, because other quartic couplings don’t
cancel exactly

D̃ is integrated out: Big effect on λY
HdŨ

Q̃ is integrated out: Evolution of couplings with Q̃ as outer
particle stops
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Appendix
Independent couplings

Independent Yukawa couplings
Q̃ is integrated out:

Yu,Hu : Integrating out the Q̃ changes wave function
renormalizaton of U
→ larger decreasing for larger µ2 because of gauge couplings
Yu,Ũ : Integrating out the Q̃ changes wave function

renormalization of H̃u → Reduces contributions of Yukawa
couplings
But gluino exchange betwenn Q and Ũ not longer possible →
Dominating effect → Contributions of Yukawa coupling bigger
than contributions of gauge couplings → Increasing for larger
µ2

Yu,Q̃: constant, because an external field is integrated out

Integrating out Ũ :

Yu,Ũ : Stops
Yu,Hu : Small bend → larger decreasing
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Appendix
Independent couplings

Independent gauge couplings

Anomalous dimenions of gluon and gluino:

γg = −7 + 2ΘG̃ +
1
6

Ng∑
i=1

(
2ΘQ̃i

+ ΘD̃i
+ ΘŨi

)
(15)

γg̃ = −3

3Θg̃ − 1
6

Ng∑
i=1

(
2ΘQ̃i

+ ΘŨi
+ ΘD̃i

) (16)

Integrating out a squark changes the value of -3:

Gluon: −3 1
6

Gluino: −3 1
2

→ larger slope of the gaugino coupling
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Appendix
Independent couplings

GUT Masses

mSugra:
m2
Q̃

= · · · = m2
0, Mg̃ = · · · = M 1

2

AMSB :

m2
i = −1

4
dγi
d lnµ

m2
3
2

, Mλ =
β(g2)
2g2

m 3
2

GMSB:

m2
i (Mmess) = 2NmessΛ2

∑
a

Ca

(
g2
a

16π2

)2

Ma(Mmess) = NmessΛ
g2

16π2
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Appendix
Independent couplings

Running Masses: mSugra (SPS 2) III
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