Journées Collisionneur Linéaire décembre 2014 - Grenoble

ILC Higgs physics case

(and report from LCWS14)

Sandro De Cecco

Université Paris Diderot – Institut Universitaire de France LPNHE Paris

ernational linear collider

sandro.dececco@lpnhe.in2p3.fr

Sandro De Cecco - LPNHE Paris

Outline

- ILC Higgs physics case, short review
 - ILC Higgs physics
 - Requirements on precision for NP scenarios
- ILC prospected precision + some LCWS14 updates
 - Total σ and total Γ
 - Higgs couplings
 - Higgs self-coupling
 - Fingerprinting BSM scenarios with Higgs

• Summary and comments

N.B. 1: <u>this talk is not</u> a comprehensive report of all the tremendous amount of work going on to make the ILC physics case even stronger. Selection of topics based on personal choice.

N.B. 2: results collected from ILC TDR, Snowmass report, HiggsHunting, HiggsCoupling and LCWS 2013 & 2014.

EWSB is a BSM physics case...

• Most important question to be addressed :

– Is the Higgs elementary or composite ?

- (weakly or strongly interacting ?)
- In the case od SUSY:
 - elementary Higgs in an extended multiplet structure XHDM with X≥2.
 - \rightarrow search for SuSy part and **extra higgses H, A, H**[±]

ightarrow look for deviations in Higgs couplings

- In case of compositeness (new QCD-like interaction):
 - H(125) is composite
 - → look for deviations in Higgs and Top (ttZ) couplings
- → need a precision facility : ILC

BSM deviations in Higgs couplings

Size of deviation depends on NP scale :

Example 1: MSSM (tan β =5, radiative corrections \approx 1)

 $\frac{g_{hbb}}{g_{h_{\rm SM}bb}} = \frac{g_{h\tau\tau}}{g_{h_{\rm SM}\tau\tau}} \simeq 1 + 1$

$$.7\% \left(\frac{1 \text{ Te}}{m_A}\right)$$

ex.: theory error on hbb estimated down to 0.4% when ILC run (Peskin)

heavy Higgs mass

Example 2: Minimal Composite Higgs Model

$$\frac{g_{hVV}}{g_{h_{SM}VV}} \simeq 1 - 8.3\% \left(\frac{1 \text{ TeV}}{f}\right)^2$$

composite scale

NP at 1 TeV gives few percent deviation → need for sub-percent precision

P.Giardino, et al.arXiv:1303.3570 [hep-ph]; A.Djouadi, J.Quevillon,arXiv:1304.1787 [hep-ph]; **NMSSM model:** G.~Belanger et al., JHEP **1301**(2013) 069; R.Barbieri, et al., arXiv:1304.3670 [hep-ph];

mass

m_A

Two Higgs Doublets:

B.Grinstein, P.Uttayarat, arXiv:1304.0028 [hep-ph]; O.~Eberhardt et al., arXiv:1305.1649 [hep-ph].

Higgs production at e⁺e⁻

Advantage of wide range in Vs to probe for different processes

Higgs production at e⁺e⁻ at E_{CM}<500 GeV

The Key to ILC Higgs physics

At LHC all the measurements are $\sigma \times BR$ measurements.

At ILC all but the σ measurement using recoil mass technique is $\sigma \times BR$ measurements.

Higgs recoil mass

 σ_{ZH} is the key to extract BR(h \rightarrow AA) from σ ×BR(h \rightarrow AA) and g_{hAA} from BR(h \rightarrow AA) through determination of the total width $\Gamma_h!$ (great advantage of LC)

Keisuke Fujii @ Higgs Couplings 2014, Trino

Higgs recoil mass

- **★** To date, most studies only use $Z \rightarrow \mu\mu$ and $Z \rightarrow ee$
- **★** Statistical precision limited by leptonic BRs of 3.5 %
- **★** Here: extend to $Z \rightarrow qq \sim 70 \%$ of Z decays
- **\star** Strategy identify $Z \rightarrow qq$ decays and look at recoil mass
- **★** Can never be truly model independent:
 - unlike for $Z \rightarrow \mu\mu$ can't cleanly separate H and Z decays

Higgs recoil study wit ZH→qqH

Separating ZZ and WW \rightarrow 4jets from HZ :

Linear Collider WorkShop 2014 @ Belgrade : Tatsuhiko Tomita : 09/10/2014

- The precision of total cross section left 5.6% -> 4.7%, right 4.0% -> 3.3% from AWLC. (but still not satisfactory.)
- Categorization can reduce difference of efficiency especially tautau, WW->leptonic.
- Current cut has bias for gg and WW.

Tatsuhiko Tomita/ Taikan Suehara

Using categorization

- Categorization is a powerful tool to reduce difference of efficiency among Higgs decay modes.
 - Categorize events using number of jets, leptons, taus, etc.
 - Minimize the difference of efficiency in each category (decay modes with too small fraction in the category is negligible.)
 - Calculate partial cross section from each category
 - Combine all cross section from categories to get the total cross section of ZH production.

- prospects
 - Use likelihood to improve statistical precision.
 - Equalize the cut efficiency of each Higgs decay mode.
 - Improve tau separation by optimizing tau finder.
 - Estimate systematic errors.

Model independent coupling extraction

ILC: need to measure Γ_{tot} in addition to absolute BR's to extract couplings in a model-independent way

$$\sigma_{vis} = \sigma_{prod} \times BR(H \to f)$$

$$\sigma_{prod} \sim g_{Hi}^2 \quad and \quad BR(H \to f) = \frac{\Gamma_f}{\Gamma_{tot}} \sim \frac{g_{Hf}^2}{\Gamma_{tot}}$$

 $\sigma_{vis} \sim \frac{g_{Hi}^2 g_{Hf}^2}{\Gamma_{tot}(g_{Hi}, j = 1...n)}$

 Γ_T is the Higgs total width, g_{HZZ} , g_{HWW} , and $g_{Hb\bar{b}}$ are the Higgs couplings to ZZ, WW, and $b\bar{b}$, respectively, and F_1 , F_2 , F_3 , F_4 are calculable quantities. For example,

$$F_2 = \left(\frac{\sigma_{ZH}}{g_{HZZ}^2}\right) \left(\frac{\Gamma_{H \to b\bar{b}}}{g_{Hb\bar{b}}^2}\right) \,.$$

The couplings are obtained as follows:

- 1. From $Y_1 \iff g_{HZZ}$
- 2. From $Y_1Y_3/Y_2 \iff g_{HWW}$
- 3. From g_{HWW} and $Y_4 \iff \Gamma_T$

4. From g_{HZZ} , g_{HWW} , Γ_T and Y_2 or $Y_3 \iff$

Model-independent determinations of Higgs couplings

Example--consider the following four independent measurements:

$$Y_{1} = \sigma_{ZH} = F_{1} \cdot g_{HZZ}^{2}$$

$$Y_{2} = \sigma_{ZH} \times \operatorname{Br}(H \to b\bar{b}) = F_{2} \cdot \frac{g_{HZZ}^{2}g_{Hb\bar{b}}^{2}}{\Gamma_{T}}$$

$$Y_{3} = \sigma_{\nu\bar{\nu}H} \times \operatorname{Br}(H \to b\bar{b}) = F_{3} \cdot \frac{g_{HWW}^{2}g_{Hb\bar{b}}^{2}}{\Gamma_{T}}$$

$$Y_{4} = \sigma_{\nu\bar{\nu}H} \times \operatorname{Br}(H \to WW^{*}) = F_{4} \cdot \frac{g_{HWW}^{4}}{\Gamma_{T}}$$

In reality :

33 σxBR measurements (Y_i) and σ_{ZH} (Y_{34,35})

$$\chi^2 = \sum_{i=1}^{35} \left(\frac{Y_i - Y'_i}{\Delta Y_i}\right)^2$$

10 free parameters:

 $g_{HZZ}, g_{HWW}, g_{Hbb}, g_{Hcc}, g_{Hgg},$

 $g_{H au au}, \; g_{H\gamma\gamma}, \; g_{H\mu\mu}, \; g_{Htt}, \; \Gamma_0$

 $g_{Hb\bar{b}}$

Total Higgs Width

Need to measure WW-fusion cross section (e.g. $e^+e^- \rightarrow Hvv \rightarrow bbvv$)

- need to separate from $HZ \rightarrow bbvv$ (+ handle interference)
- WW-fusion small at HZ threshold! \rightarrow need higher \sqrt{s}

11.0 %

3.6 %

3.2 %

precision on $\sigma_{\text{WW-fusion}}$:

250 GeV 350 GeV 500 GeV

dominated by error on BR(H \rightarrow bb)

High performance flavor tagging

By template fitting, we can separate $H \rightarrow bb$, cc, gg, others!

Higgs coupling precision

Improved Higgs coupling precision

PARIS

Model Independent global coupling fit

250 GeV: 25 500 GeV: 50	$\begin{array}{c} 50 \text{ fb}^{-1} \\ 00 \text{ fb}^{-1} \end{array} \xrightarrow{250} \\ 500 \end{array}$	GeV: 1150 fb ⁻¹ GeV: 1600 fb ⁻¹	Luminosity	$\bigvee (M_{\rm H} = 125 \text{ G})$	eV)	
1 TeV: 100	00 fb ⁻¹ 1	TeV: 2500 fb ⁻¹	P(e-,e+)=(-0.8,+0.3) @ 250, 50	0 GeV P(e-,e+)=(-0.8,+0.2) @ 1 Te	Baseline ILC progra	n)
	coupling	250 GeV	250 GeV + 500 GeV	250 GeV + 500 GeV + 1 TeV	250 GeV + 500 GeV + 1 TeV	
	HZZ	0.6%	0.5%	0.5%	1%	
	HWW	2.3%	0.6%	0.6%	1.1%	
	Hbb	2.5%	0.8%	0.7%	1.3%	
	Hcc	3.2%	1.5%	1%	1.8%	
	Hgg	3%	1.2%	0.93%	1.6%	
	Ηττ	2.7%	1.2%	0.9%	1.6%	
	Ηγγ	8.2%	4.5%	2.4%	4%	
	Ημμ	42%	42%	10%	16%	
	Г	5.4%	2.5%	2.3%	4.5%	
	Htt	-	7.8%	1.9%	3.1%	
	HHH	_	46%(*)	13%(*)	21%(*)	
) With H->WW (preliminary), i	f we include expected improvem	ents in jet clustering, it would become 10 Sandro De Cecco - LPNHF	Paris	250 GeV: 250 fb ⁻¹ 500 GeV: 500 fb ⁻¹ 1 TeV: 1000 fb ⁻¹	

Higgs self coupling

Existence of hhh coupling = Direct evidence of vacuum condensation

Anomalous couplings could show up everywhere!

• Self-coupling measurements offers the most direct way to test the paradigm of spontaneous symmetry breaking.

One of the most important Higgs measurements at a future machine!

Sandro De Cecco - LPNHE Paris

Higgs self coupling at ILC

challenges:

Center of Mass Energy / GeV

- huge number of different final states (huge effort needed)
- "dilution" due to interference with non-HHH diagrams (not sensitive to λ_{HHH})

HHH prospects at 1 TeV

Ongoing analysis improvements towards O(10)% measurement

Mass vs Higgs coupling relation

After Baseline LC Program

 \rightarrow would like to see this within my lifetime \odot ... not on the SM straight line though !

Higgs coupling deviation scenarios

ILC 250+550 LumiUP

Multiplet structure – 2HDM

Table 1.8. Four possible \mathbb{Z}_2 charge assignments that forbid tree-level Higgs-mediated FCNC effects in the 2HDM. [82].

		Φ_1	Φ_2	U_R	D_R	E_R	U_L , D_L , N_L , E_L
Type I		+	—	-	-	_	+
Type II	(MSSM like)	+	_	_	+	+	+
Type X	(lepton specific)	+	-	-	_	+	+
Type Y	(flipped)	+	-	_	+	—	+

g_{hbb}/g^{SM}_{hbb} vs g_{htt}/g^{SM}_{htt} plane appropriate to tackle 2HDM scenario

$e^+e^- \rightarrow HA \rightarrow bbbb @ 1 TeV ILC$

The ILC with $\sqrt{s} = 1$ TeV can directly study extra Higgs bosons with masses less than 500 GeV in relatively low tan β regions, which can't be detected easily in LHC.

same mass for both particles, 400 GeV $tan\beta = 10$ x-section: $\sqrt{s} = 1$ TeV 2.38 fb prominent decay into bb(bar) Branching fraction for $H \rightarrow bb 77\%$ $A \rightarrow bb 65\%$

Will set limits as function of mass / tan β

Comparison with HL-LHC

- Compared to the HL-LHC, ILC will provide factors of 2 - 10 improvement on couplings in modeldependent studies
- High degree of synergies for H->γγ, where LHC will provide the highest precision

Summary and comments

- ILC has already a very exciting physics case and the Higgs sector is one of the main players.
- No need for day by day comparison with circular, better go ahead steady and push for improvements.
- The BSM physics reach, in a complete MI Higgs sector study, will increase with ongoing work toward precision improvements, especially on :
 - full use of hadronic Z decays for recoil mass (and hence x-sec) to improve absolute coupling extraction.
 - Higgs self coupling is crucial but very difficult. Effort needed to go beyond current 10% level determination at 1 TeV.
 - detector performance and design optimization on hadronic jets (reconstruction, PF algos, tagging, Energy and m_{jj} resolution ...) in multi-jet events (qqH, ttH, W/ZHH, ...)
 - switch to MI EFT approach on Higgs coupling analysis
- And very important : optimization of machine parameters E_{CM} , Luminosity and ... project timeline \rightarrow

ILC staging scenarios : 250 ... 500 GeV

Start at 350 GeV?

- If staging is necessary, starting at 350 GeV presents scientific advantages over 250 GeV. Therefore, we discuss this possibility.
- At 350 GeV, Higgs production comes largely from the Higgsstrahlung process, but the important WW-fusion process is rising, increasing three-fold from 250 GeV to 350 GeV.
- This increase enables precise measurements of both the Z-Higgs coupling (g_{HZZ}) and the W-Higgs coupling (g_{HWW}) at 350 GeV.

Accuracies in the first 5 years :

BACKUP

Higgs x-sections and BR's

Summary of expected accuracies for the three cross sections and eight branching ratios obtained from an eleven parameter global fit of all available data.

	ILC(250)	ILC500	ILC(1000)	ILC(LumUp)	
process			$\Delta\sigma/\sigma$		
$e^+e^- \to ZH$	2.6~%	2.0~%	2.0~%	1.0~%	
$e^+e^- \rightarrow \nu \bar{\nu} H$	11 %	2.3~%	2.2~%	1.1~%	
$e^+e^- \to t\bar{t}H$	-	28~%	6.3~%	3.8~%	
mode	$\Delta \mathrm{Br}/\mathrm{Br}$				
$H \to ZZ$	19~%	7.5~%	4.2~%	2.4~%	
$H \to WW$	6.9~%	3.1~%	2.5~%	1.3~%	
$H \to b\bar{b}$	2.9~%	2.2~%	2.2~%	1.1~%	
$H \to c\bar{c}$	8.7 %	5.1~%	3.4~%	1.9~%	
$H \rightarrow gg$	7.5 %	4.0~%	2.9~%	1.6~%	
$H \to \tau^+ \tau^-$	4.9~%	3.7~%	3.0~%	1.6~%	
$ H \rightarrow \gamma \gamma$	34%	17~%	7.9~%	4.7~%	
$ H \rightarrow \mu^+ \mu^-$	100 %	100~%	31~%	20~% 15	

Higgs $\Gamma_{\!\mathsf{T}}$ and couplings

Summary of expected accuracies $\Delta g_i/g_i$ and Γ_T for model independent determinations of the Higgs boson couplings

Mode	ILC(250)	ILC(500)	ILC(1000)	ILC(LumUp)
$\sqrt{s} \; (\text{GeV})$	250	250 + 500	250 + 500 + 1000	250 + 500 + 1000
$L (fb^{-1})$	250	250 + 500	250 + 500 + 1000	1150 + 1600 + 2500
$\gamma\gamma$	$18 \ \%$	8.4 %	4.0~%	2.4~%
gg	6.4~%	2.3~%	1.6~%	0.9~%
WW	4.9~%	1.2~%	1.1~%	0.6~%
ZZ	1.3~%	1.0~%	1.0~%	0.5~%
$t \overline{t}$		14~%	3.2~%	2.0~%
$b\overline{b}$	5.3~%	1.7~%	1.3~%	0.8~%
$\tau^+ \tau^-$	5.8~%	2.4~%	1.8~%	1.0~%
$car{c}$	6.8~%	2.8~%	$1.8 \ \%$	$1.1 \ \%$
$\mu^+\mu^-$	91~%	91~%	16~%	10~%
Γ_T	12~%	5.0~%	4.6~%	2.5~%
hhh	_	83~%	21~%	13~%
BR(invis.)	$< 0.9 \ \%$	< 0.9~%	$< 0.9 \ \%$	< 0.4 %

The theory errors are $\Delta F_i/F_i=0.5\%$. For the invisible branching ratio, the numbers quoted are 95% confidence upper limits.

14

Higgs recoil with $ZH \rightarrow qqH$ - categorization

Categories (example Olep, Otau)

category	0lep,0tau	before	after	difference	w/o categories
H->all	81.6%	448,212	185,999 (41.5%)		
H->bb	96.8%	300,853	119,211 (39.6%)	-4.5%	-5.1%
H->WW(I)	8.3%	1,048	429 (40.9%)	+1.4%	-73.4%
H->WW(sl)	29.7%	15,921	5,618 (35.3%)	-14.9%	+10.4%
H->WW(h)	91.9%	51,524	23,773 (46.1%)	+11.1%	+36.4%
H->gg	96.6%	46,773	23,636 (50.5%)	+21.7%	+31.9%
Η->ττ	12.2%	4,368	1,362 (31.2%)	-24.8%	-52.6%
H->ZZ	78.2%	11,811	4,766 (40.4%)	-2.7%	+8.1%
H->cc	96.3%	13,895	6,284 (45.2%)	+8.9%	+8.7%
Η->γγ	91.3%	1,873	793 (42.3%)	-1.9%	+2.8%

Linear Collider WorkShop 2014 @ Belgrade : Tatsuhiko Tomita : 09/10/2014

21

Model Independent global coupling fit Baseline ILC program

250 GeV: 250 fb⁻¹ 500 GeV: 500 fb⁻¹ 1 TeV: 1000 fb⁻¹

 $(M_{\rm H} = 125 {\rm ~GeV})$

P(e-,e+)=(-0.8,+0.3) @ 250, 500 GeV

P(e-,e+)=(-0.8,+0.2) @ 1 TeV

coupling	250 GeV	250 GeV + 500 GeV	250 GeV + 500 GeV + 1 TeV
HZZ	1.3%	1%	1%
HWW	4.8%	1.1%	1.1%
Hbb	5.3%	1.6%	1.3%
Hcc	6.8%	2.8%	1.8%
Hgg	6.4%	2.3%	1.6%
Ηττ	5.7%	2.3%	1.6%
Ηγγ	18%	8.4%	4%
Ημμ	91%	91%	16%
Г	12%	4.9%	4.5%
Htt	-	14%	3.1%
HHH	-	83%(*)	21%(*)

Sandro De Cecco - LPNHE Paris

Top Yukawa coupling

Cross section maximum at around Ecm = 800GeV

Philipp Roloff, LCWS12 Tony Price, LCWS12

DBD Full Simulation

A factor of 2 enhancement from QCD bound-state effects

$$1 \, \mathrm{ab}^{-1} @500 \, \mathrm{GeV} \qquad m_H = 125 \, \mathrm{GeV} \\ \Delta g_Y(t) / g_Y(t) = 9.9\%$$

Tony Price, LCWS12

scaled from mH=120 GeV

500 GeV is very close to the threshold. Moving up a little bit helps significantly!

Further improvements (Peskin)

Improve precision determinations of Higgs couplings by imposing the constraint that

$$\sum_{i} BR_i = 1$$

The reason for this is that I used a 9-parameter fit constrained to the relation $\sum BR_i = 1$.

This constraint is very powerful because determinations of Higgs couplings require constraining the Higgs total width.

$$\sigma(A\overline{A} \to h) \cdot BR(h \to B\overline{B}) \sim \frac{\Gamma(h \to A\overline{A})\Gamma(h \to B\overline{B})}{\Gamma_T}$$
 The constraint has a large offect here:

The constraint has a large effect here:

error in Γ_T	unconstrained	$\sum BR = 1$
ILC 500	5.0%	1.6%
ILC 500 up	2.8%	0.75%
ILC 1000	4.6%	1.2%

Improved expectations

Σ BR = 1

M. Peskin, LCWS 2013 arXiv: 1312.4974

BR(BSM:vis.), BR(inv.) in stead of Γ_h

ILC expectation assumes that BR(BSM:vis.) can be measured as precisely as BR(inv.).

LC greatly improves the LHC precisions and provides the necessary precision for the fingerprinting

For rare decays such as $H \rightarrow \gamma \gamma$, there is powerful synergy of LHC and LC!

Higgs self coupling BG dilution

Sandro De Cecco - LPNHE Paris

DBD full simulation

Higgs self-coupling @ 500 GeV

 $e^+ + e^- \rightarrow ZHH$ M(H) = 120 GeV $\int Ldt = 2ab^{-1}$

P(e-,e+)=(-0.8,+0.3)

			background	significance		
Energy (GeV)	Modes	signal	(tt, ZZ, ZZH/ ZZZ)	excess	measurement	
EOO	$ZHH ightarrow (l\bar{l})(b\bar{b})(b\bar{b})$	3.7	4.3	1.5σ	1.1σ	
500		4.5	6	1.5σ	1.2σ	
500	$ZHH ightarrow (u ar{ u}) (b ar{b}) (b ar{b})$	8.5	7.9	2.5σ	2.1σ	
500	$ZHH ightarrow (qar{q})(bar{b})(bar{b})$	13.6	30.7	2.2σ	2.0σ	
		18.8	90.6	1.9σ	1.8σ	

(cf. 80% for qqbbbb at the LoI time)

 $\sigma_{ZHH} = 0.22 \pm 0.06$ fb

12

100 200 300

Lumi = 2 ab⁻¹

600

700 800

900 1000 azuri Lumi

400 500

Higgs Couplings 2014, Trino

PARIS

Extrapolation to M(H)=125GeV

HHH Prospects

Preliminary full simulation results at 500GeV confirmed the validity of extrapolation. (C.Duerig @ AWLC14)

Scenario A: HH-->bbbb, full simulation done Scenario B: by adding HH-->bbWW*, full simulation ongoing, expect ~20% relative improvement Scenario C: color-singlet clustering, future improvement, expected ~20% relative improvement (conservative)

HHH	500 GeV			500 GeV + 1 TeV		
Scenario	A	В	С	A	В	С
Baseline	104%	83%	66%	26%	21%	17%
LumiUP	58%	46%	37%	16%	13%	10%
250 GeV: 250 fb ⁻¹ 500 GeV: 500 fb ⁻¹ 1 TeV: 1000 fb ⁻¹			250 GeV: 115 500 GeV: 160 1 TeV: 250	i0 fb ⁻¹)0 fb ⁻¹)0 fb ⁻¹		3D Study
	Baseline		LumiUF	ILD DBD Stu IP (Junping Tia		ng Tian, Masakazu Kurat

Deviations in extended Higgs sectors

Survey according to Haber's decoupling theorem with M = 1 TeV:

				- -
Model	Δg_{HVV}	$\Delta g_{Hbar{b}}$	$\Delta g_{H\gamma\gamma}$	
Singlet Mixing	pprox 6%	pprox 6%	$\approx 6\%$	
2HDM	$\approx 1\%$	pprox 10%	$\approx 1\%$	
Decoupled MSSM	pprox -0.0013%	pprox 1.6%	< 1.5%	2
Composite	pprox -3%	$\approx -(3-9)\%$	pprox -9%	Ē
Top Partner	pprox -2%	pprox -2%	$\approx 1\%$	Ċ

(see e.g. plenary talks by Keisuke Fujii and Philipp Roloff)

 \implies Need for high precision to discover differences from SM Higgs! \implies High order contributions in theoretical calculations required at a LC, although by far smaller than at LHC!

Some predictions are very sensitive to numerical input values: Variation of m_H by $\pm 200 \text{ MeV} \leftrightarrow \text{BR}(H \rightarrow ZZ^{(*)}/WW^{(*)}) \sim \pm 2.5\%!$

Future measurements of Higgs couplings

Facility	LHC	HL-LHC	ILC500	ILC500-up
$\sqrt{s} \; (\text{GeV})$	14,000	14,000	250/500	250/500
$\int \mathcal{L} dt \ (\mathrm{fb}^{-1})$	300/expt	3000/expt	250 + 500	1150 + 1600
κ_{γ}	5-7%	2-5%	8.3%	4.4%
κ_g	6-8%	3-5%	2.0%	1.1%
κ_W	4-6%	2-5%	0.39%	0.21%
κ_Z	4-6%	2-4%	0.49%	0.24%
κ_ℓ	6-8%	2-5%	1.9%	0.98%
$\kappa_d = \kappa_b$	10-13%	4-7%	0.93%	0.60%
$\kappa_u = \kappa_t$	14-15%	7-10%	2.5%	1.3%

Snowmass Report 1310.8361

Coupling constants can be typically Measured with better than 1 % at ILC

HL-LHC measurements of σxBR

Sandro De Cecco - LPNHE Paris

CLIC sensitivity (snowmass report)

			Stat	istical precis	sion
Channel	Measurement	Observable	350 GeV	1.4 TeV	3.0 TeV
			$500 {\rm ~fb^{-1}}$	1.5 ab^{-1}	2.0 ab^{-1}
ZH	Recoil mass distribution	m _H	120 MeV	_	_
ZH	$\sigma(HZ) \times BR(H \rightarrow invisible)$	$\Gamma_{\rm inv}$	tbd	_	_
ZH	$H \rightarrow b\overline{b}$ mass distribution	m _H	tbd	_	_
$Hv_e\overline{v}_e$	$H \rightarrow b\overline{b}$ mass distribution	m _H	—	40 MeV*	33 MeV*
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{Z} \to \ell^+ \ell^-)$	$g^2_{\rm HZZ}$	4.2%	_	_
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g_{ m HZZ}^2 g_{ m Hbb}^2 / \Gamma_{ m H}$	$1\%^{\dagger}$	_	_
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \to \mathrm{c}\overline{\mathrm{c}})$	$g_{ m HZZ}^2 g_{ m Hcc}^2 / \Gamma_{ m H}$	$5\%^{\dagger}$	_	_
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \to \mathrm{gg})$		$6\%^{\dagger}$	_	_
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \to \tau^+ \tau^-)$	$g_{ m HZZ}^2 g_{ m H au au}^2 / \Gamma_{ m H}$	5.7%	_	_
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \to \mathrm{WW}^*)$	$g_{\rm HZZ}^2 g_{\rm HWW}^2 / \Gamma_{\rm H}$	$2\%^\dagger$	_	_
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \to \mathrm{ZZ}^*)$	$g_{\rm HZZ}^2 g_{\rm HZZ}^2 / \Gamma_{\rm H}$	tbd	_	_
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g_{\rm HWW}^2 g_{\rm Hbb}^2 / \Gamma_{\rm H}$	$3\%^{\dagger}$	0.3%	0.2%
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{c}\overline{\mathrm{c}})$	$g_{\rm HWW}^2 g_{\rm Hcc}^2 / \Gamma_{\rm H}$	_	2.9%	2.7%
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{gg})$		_	1.8%	1.8%
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times \mathit{BR}(\mathrm{H} \to \tau^{+}\tau^{-})$	$g^2_{ m HWW} g^2_{ m H au au} / \Gamma_{ m H}$	_	3.7%	tbd
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times \mathit{BR}(\mathrm{H} \to \mu^{+}\mu^{-})$	$g_{\rm HWW}^2 g_{\rm H\mu\mu}^2 / \Gamma_{\rm H}$	_	29%*	16%
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) imes \mathit{BR}(\mathrm{H} ightarrow \mathrm{gg})$		_	15%*	tbd
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times \mathit{BR}(\mathrm{H} \to \mathrm{Z}\gamma)$		_	tbd	tbd
$Hv_e\overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times \mathit{BR}(\mathrm{H} \to \mathrm{WW}^{*})$	$g_{ m HWW}^4/\Gamma_{ m H}$	tbd	$1.1\%^{*}$	$0.8\%^{*}$
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{ZZ}^{*})$	$g_{\rm HWW}^2 g_{\rm HZZ}^2 / \Gamma_{\rm H}$	_	3%†	$2\%^\dagger$
He ⁺ e ⁻	$\sigma(\mathrm{He^+e^-}) \times BR(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g^2_{ m HZZ} g^2_{ m Hbb}/\Gamma_{ m H}$	_	$1\%^{\dagger}$	$0.7\%^\dagger$
tīH	$\sigma(t\bar{t}H) \times BR(H \to b\bar{b})$	$g_{ m Htt}^2 g_{ m Hbb}^2 / \Gamma_{ m H}$	_	8%	tbd
$HHv_e\overline{v}_e$	$\sigma(HH\nu_e\overline{\nu}_e)$	<i>g</i> HHWW	_	7%*	3%*
$HHv_e\overline{v}_e$	$\sigma(\mathrm{HHv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}})$	λ	_	28%	16%
$HHv_e\overline{v}_e$	with $-80\% e^-$ polarization	λ	_	21%	12%

TLEP estimates

	10 ab ⁻¹	0.25 ab ⁻¹
	TLEP 240	ILC 250
$\sigma_{ m HZ}$	0.4%	2.5%
$\sigma_{\rm HZ} \times {\rm BR}({\rm H} \rightarrow {\rm b}\bar{\rm b})$	0.2%	1.1%
$\sigma_{\rm HZ} \times {\rm BR}({\rm H} \to {\rm c}\bar{\rm c})$	1.2%	7.4%
$\sigma_{\rm HZ} \times {\rm BR}({\rm H} \to {\rm gg})$	1.4%	9.1%
$\sigma_{\rm HZ} \times {\rm BR}({\rm H} \rightarrow {\rm WW})$	0.9%	6.4%
$\sigma_{\rm HZ} \times {\rm BR}({\rm H} \to \tau \tau)$	0.7%	4.2%
$\sigma_{\rm HZ} \times {\rm BR}({\rm H} \to {\rm ZZ})$	3.1%	19%
$\sigma_{\rm HZ} \times {\rm BR}({\rm H} \to \gamma \gamma)$	3.0%	35%
$\sigma_{\rm HZ} \times {\rm BR}({\rm H} \to \mu\mu)$	13%	100%

Table 4: Statistical precision for Higgs measurements obtained from the proposed TLEP programme at $\sqrt{s} = 240$ GeV only (shown in Table 3). For illustration, the baseline ILC figures at $\sqrt{s} = 250$ GeV, taken from Ref. [6], are also given. The order-of-magnitude smaller accuracy expected at TLEP in the H $\rightarrow \gamma\gamma$ channel is the threefold consequence of the larger luminosity, the superior resolution of the CMS electromagnetic calorimeter, and the absence of background from Beamstrahlung photons.

Multiplet structure – 2HDM

Snowmass ILC Higgs White Paper (arXiv: 1310.0763)

Higgs coupling deviation scenarios

- ILC precision matters ILC will be capable to distinguish between different models of more complex Higgs sectors
 - SUSY multiple Higgs bosons
 - Composite Higgs boson

Composite Higgs reach

Complementary approaches to probe composite Higgs models

- Direct search for heavy resonances at the LHC
- Indirect search via Higgs couplings at the LC
 Comparison doponds on the coupling strength (g)

Comparison depends on the coupling strength (g_*)

WIMP Dark Matter at ILC

WIMP searches at colliders are complementary to direct/indirect searches. Examples at the ILC:

Higgs Invisible Decay

Monophoton Search

→ M_{DM} reach ~ Ecm/2

at 250 GeV, 1150 fb⁻¹

In many models, DM has a charged partner as in higgsino DM case of SUSY.

SUSY-specific signatures (decays to DM)

• light Higgsino, light stau, etc.

Effect of beam polarization

