

Model independent analysis for $HZ(Z \rightarrow q\bar{q})$ @ILC-250 and @FCC-250

Third JCL (Journés Collisionneur Linéaire)

Yacine Haddad

Laboratoire Leprince-Ringuet, Now @ Imperial College London

MOTIVATION

Outline	Motivation	Analysis	Background rejection
	•	0000	00000000
Motivation			

- ZH is the dominant Higgs production process @ 250 GeV e^+e^- machine
- $e^+e^- \rightarrow Z^* \rightarrow ZH$

•
$$M_H^2 = M_{recoil}^2 = (\sqrt{s} - E_Z)^2 - P_Z^2$$

- Model in dependent extraction of g_{ZZH} ∝ σ = N/(L · ε)
- Reconstruct the *M_{recoil}* from the *Z* decay product only, without measuring the Higgs products
- Can we exploit $Z \rightarrow jj$ decays?
 - Increase the Higgs statistics $BR(Z \rightarrow q\bar{q}) \sim \rightarrow 70\% \ (\sim 6\% \text{ for } Z \rightarrow \mu\mu)$
- Very difficult @ 250 GeV (ZZ/WW background)
 - $\bullet \ \rightarrow \ different \ Higgs \ efficiencies \ for \ different \\ Higgs \ decay$
 - Almost model independent
 - Could be better at higher \sqrt{s}

ANALYSIS

Outline	Motivation	Analysis	Background rejection
	0	●000	00000000
Analysis	Strategy		

- Jet clustering of the stable + visible particles (no smearing of the particle energy at this stage)
- Jet reconstruction using Durham clustering algorithm
- Smearing of the reconstructed jet's energy
 - Energy : $\sigma(E_i)/E_i = \alpha$
 - Momentum ·

$$\sigma(p_j) = \left(\frac{E_j}{P_j}\right)\sigma(E_j) = \left(\frac{E_j^2}{P_j}\right)\alpha$$

- A $\alpha = 3\%$ is chosen
- Selection of the jet pair compatible with Z boson \rightarrow the jet pair minimizing $D = |m_{ii} - m_Z|$
- Selection exploiting (almost) only the kinematics of the Z decay product
- Analysis of the di-jet recoil mass spectrum
- Only visible decays of Higgs are considered

100

150

200 m_{recoil} [GeV]

Outline	Motivation	Analysis	Background rejection
	0	0000	000000000
MC Samples			

- Main backgrounds for 250 GeV Higgsstrahlung: W^+W^- , ZZ, $Z \rightarrow q\bar{q}$
- MC event samples generated with:
 - WHIZARD-v1.95 Generator + pythia-v6 for hadronisation
 - ISR + Beamstrahlung included
- Apply event weight for each process:
 - $w_i = L \cdot \sigma_i / N_i$
- Account for beam polarisation:
 - $w_i(e_R^-e_L^+) = (\frac{1+P(e^-)}{2})(\frac{1+P(e^+)}{2})$

Outline	Motivation	Analysis	Background rejection
	0	0000	000000000
Jet Clustering			

- No knowledge on the Higgs boson decay mode is employed in this analysis
- Various topologies:
 - 2 jet: $ZH \rightarrow q\bar{q} + inv \Rightarrow$
 - 4 jet: $ZH \rightarrow q\bar{q} + b\bar{b}$
 - 4-6 jet: $ZH
 ightarrow qar{q} + WW/ZZ$
- Events cannot be forced into predefined number of jets
 - \Rightarrow Higgs selection must be unbiased
- Event resolved in arbitrary number of exclusive jets using:
 - Durham algorithm with one parameter: y_{cut}
- The selected di-jet mass is fitted by a Voigtian p.d.f (Breit-Wigner⊗Gauss)
 - The $\chi 2$ vs $y_{cut} \rightarrow \min$ at $y_{cut} = 0.006$
- The y_{cut} = 0.006 is chosen for the further analysis

7

- Full simulation of ILD detector using the following configuration:
 - ECAL \rightarrow Si-W ECAL option
 - HCAL \rightarrow SDHCAL option
- The reconstruction of the Particle-Flow-Object is done by PandoraPFA

BACKGROUND REJECTION

Outline Motivation Analysis Background rejection •00000000

Preselection: $ZZ/WW \rightarrow q\bar{q}q\bar{q}$ vetoes

- Consider that each event is ZZ $\rightarrow q\bar{q}q\bar{q}$ (WW $\rightarrow q\bar{q}q\bar{q}) \Rightarrow$ force jet-clustering into 4 jets
- for the ZZ veto \rightarrow choose jet pairing minimizing $\chi^2 = (m_{ij} m_Z)^2 + (m_{kj} m_Z)^2$

for the WW veto \rightarrow choose jet pairing minimizing $\chi^2 = (m_{ij} - m_W)^2 + (m_{ki} - m_W)^2$

Cut on the selected pair masses (not on the recoil mass)

- Consider that each event is $WW \rightarrow q\bar{q}l\nu \Rightarrow$ force jet-clustering into 3 jets
- Choose jet pair closest to the W mass

• Cut on the selected pair mass the corresponding recoil mass

OutlineMotivation
oAnalysis
occoBackground rejection
occoPreselection: $Z \rightarrow q\bar{q}$ veto

• Consider that each event is $Z
ightarrow q ar q \Rightarrow$ force jet-clustering into 2 jets

Additional selection

Outline	Motivation	Analysis	Background rejection
	0	0000	00000000
MVA	based selection		

- Further selection \rightarrow Boosted Decision Tree (BDT)
- The input variables are:
 - : invariant mass of the di-jet system m_{ii}
 - $|\cos \theta_Z|$: di-jet production angle
 - Δθ₁₂ : opening angle of the di-jet
 - $\Delta \phi_{12}$: opening angle of the di-jet $\Delta \phi_{12}$: opening angle of the di-jet is the transverse plan $|\Delta E_{12}|$: largest boost from Z-pair \rightarrow largest jet energy spread $-\log_{10}(y_{23,34})$: Durham resolution parameters
- Train the BDT for combined backgrounds
- One BDT of each polarisation $(e_R^- e_I^+ \text{ or } e_I^- e_R^+)$

Outline	Motivation	Analysis	Background rejection
	0	0000	00000000
MVA	based selection		

- Further selection \rightarrow Boosted Decision Tree (BDT)
- The input variables are:
 - : invariant mass of the di-jet system m_{ii}
 - $|\cos \theta_Z|$: di-jet production angle
 - Δθ₁₂ : opening angle of the di-jet
 - $\Delta \phi_{12}$: opening angle of the di-jet $\Delta \phi_{12}$: opening angle of the di-jet is the transverse plan $|\Delta E_{12}|$: largest boost from Z-pair \rightarrow largest jet energy spread $-\log_{10}(y_{23,34})$: Durham resolution parameters
- Train the BDT for combined backgrounds
- One BDT of each polarisation $(e_R^- e_I^+ \text{ or } e_I^- e_R^+)$

- Choose the cut value which maximises the significance
 - $S = N_S / \sqrt{(N_S + N_B)}$
 - N_S = number of signal events, N_B = number of background events

- Choose the cut value which maximises the significance
 - $S = N_S / \sqrt{(N_S + N_B)}$
 - N_S = number of signal events, N_B = number of background events

 Outline
 Motivation
 Analysis
 Background rejection

 Or Testing the model independence
 0000
 0000
 0000

- The model independence of the Higgs tagging can be checked by estimating the efficiency in various decay modes
- The SM Higgs hypothesis is assumed here

- The analysis is sensible to the Higgs decay modes having a missing momentum
 - $H \rightarrow WW$, $H \rightarrow ZZ$ and $H \rightarrow Z\gamma$
 - Dependence might be corrected by a dedicated analyses $(H \rightarrow ZZ \rightarrow inv)$

• The cross section is estimated in both beam polarisation by

•
$$\sigma_{ZH} = \sigma_{ZH}(Z \rightarrow q\bar{q})/BR(Z \rightarrow q\bar{q})$$

• with $\sigma_{ZH}(Z
ightarrow q ar q) = (N - N_{bkp})/arepsilon \mathcal{L}$

Beam polarisation	$\sigma_{ZH} = \sigma_{ZH}(Z ightarrow q ar{q})/BR(Z ightarrow q ar{q})$	σ_{ZH}^{SM}
$P(e^-, e^+) = (-0.8, +0.3)$	301.11 fb $\pm (3.89)_{stat}$	300.66 fb
$P(e^{-}, e^{+}) = (+0.8, -0.3)$	202.98 fb $\pm (2.00)_{stat}$	$203.05 {\rm fb}$

- The statistical error on σ_{ZH} can be estimated by $\sqrt{N}/(N-N_{bkp})$
- The σ_{ZH} is proportional to g_{HZZ}^2 (coupling at HZZ vertex)

Beam polarisation	$\left(\frac{\delta\sigma_{ZH}}{\sigma_{ZH}}\right)_{\rm stat}$	$\left(\frac{\delta g_{HZZ}}{g_{HZZ}}\right)_{stat}$
$P(e^{-}, e^{+}) = (-0.8, +0.3)$	1.85%	0.92%
$P(e^-, e^+) = (+0.8, -0.3)$	1.41%	0.70%

A statistical precision ~ 1% can be reached on g_{HZZ}

- Example of CPEC (China) or FCC-ee (5 ab^{-1} , 10 ab^{-1})
- Higher luminosity comparing to linear colliders
- Beamstrahlung effect is negligible \rightarrow the results might be better

• A statistical precision $\sim 0.3\%$ can be reached on g_{HZZ}

- Development of fast simulation using SDHCAL performance
- Demonstration of feasibility of almost model independent analysis at $\sqrt{s}=250{\rm GeV}\to\sim5\%$ bias level
- Precision on the σ_{ZH} of 1.4% have been reached
- Sensitivity/efficiency of the analysis as function of jet energy resolution
- Determination of an optimal \sqrt{s} for a running ILC
 - Possible change on the ILC baseline under discussion

BACKUP

MC processes statistics

		1		Carlo and a second second
Pher	200	1 t		Camp
10 12	$N_{jet} \geq 2$	σ [fb]	Nevents	weight
T/	XXX		1.3	$(L = 500 \ fb^{-1})$
X.L	ZH(qq + X)	346.013	437368	0.395563
A	WW(qqqq)	14874.3	1074111	6.92401
CP+	$WW(qql\nu)$	18781	1753663	5.35479
e _L e _R	ZZ(qqqq)	1402.06	1004632	0.697798
f	ZZ(qqll)	1422.14	1299591	0.547149
La la	Z(qq)	129149	1629438	39.6299
0.2	ZH(qq + X)	221.952	267357	0.415085
	WW(qqqq)	136.357	136325	0.500117
a= a+	$WW(qql\nu)$	172.733	158021	0.546551
$e_R e_L$	ZZ(qqqq)	604.971	603931	0.500861
2	ZZ(qqll)	713.526	637256	0.559843
	Z(qq)	71272.8	1676503	21.2564