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Introduction

Introduction

Strategy for Detector & Physics Benchmarking:
1-to-1 relation between physics measurement and one specific
detector performance aspect is rare⇒
can we factorise the two?
Physics studies:

formulate requirements on various detector performance aspects,
ideally “partial derivative”
this includes requirements on controlling systematics.

Detector benchmarking:
Test a comprehensive list of performance aspects for various
detector configurations.

(From J. List in the ILD concept meeting @LCWS )
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Introduction

Introduction

In This talk
I will try to show how different
detector issues that becomes
important for different physics,
It will not say (much) about detailed
optimisation-work done for individual
detector elements.
It will try to point out the way forward,
rather than to give answers
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Basic optimisations

Basic optimisations

A few observations on detector-component optimisation in ILD (post
DBD):

Presently
Mainly has been about ECal
Radius
Sensitive detector technology
Number of layers

Aimed at cost-reduction.
Only considers JER as metric - mainly for highest energy jets.

Other talks today have covered this !
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Optimisation and physics

Optimisation and physics

Higgs, higgs, higgs ....
What does that require ?
Has anything changed ?

But also: we have been asked to strengthen the BSM case.
What does that require ?

ILC does precision physics⇒ systematics control.
What does that require ?

I will try to touch on aspects of these issues, looking specifically at
the tracker, with a few comments on other issues.
In no way a complete survey, Eg. nothing specific about
impact-parameters.
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Optimisation and physics Optimisation and physics: Tracking

Optimisation and physics: Tracking

Reminder:
∆(1/pT ) ∝ L−2.5 (2 purely geometric + ( ≥) 0.5 because of less
points in TPC).
But only linear in σpoint and B-field⇒
Technologically challenging to compensate lower radius by higher
B-field and/or σpoint .
But please note: Stored energy in B-field ∝ B2V , so at equal
stored energy, a smaller detector can have a higher field.

Also: σ2
point ,TPC = σ2

0(sinφ) +
C2

d (B)

Neff (sin θ)Z , Cd (B) ∝ 1/B2 ⇒
complicated relation, but gets better with shorter drift-length and
higher B.
Issues to be studied in the near future: please connect to the ILD
optimisation phone meetings !
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Optimisation and physics Optimisation and physics: Tracking

Optimisation and physics: Tracking

Recent developments in Higgs analysis: A game-changer?
At 250 GeV, beam-spread dominating Higgs mass.
Not so at 350: average pµ approx 50% higher⇒ ∆(pt ) is approx
2.5 times worse.
Common wisdom up to now: No big deal, we’ll get the mass at
250, then the rest at 350 and 500.
True if only Z → leptons is used, which we want to do to remain
model-independent, ie. with the Higgs decay making no
difference.
However, now methods and ideas are coming up to also use the
hadronic decays ...
See M. Thomson’s talk in ILD@Oshu, T. Barklow @LCWS, Y.
Haddad on Monday.
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Optimisation and physics Optimisation and physics: Tracking

Optimisation and physics: Tracking

Error-breakdown from T. Barklow,
propagating uncertainties in BSM.

But, also in this case
the Z → leptons gives
a important
contribution: they not
so many, but they’re
much more precise.
Higgs recoil @ 350
GeV⇒ the return of
the detector ...
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Optimisation and physics Optimisation and physics: Tracking

- Impact of the Radius   -25

—  GPET(sig) + 4th Poly(bkg). —  Kernel(sig) + 4th Poly(bkg).
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— σzh precision degrades  >  5 % ( R: 1.8 m ⇨ 1.4 m ) 
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Optimisation and physics Optimisation and physics: Tracking

Optimisation and physics: Tracking

How to get the best
∆(1/pT ) in ILD at high
momentum ?
Answer: The SET.
Almost a factor 2.
In fact, the current SET
has saturated what can
be achieved by a very
precise external
measurement, so only
B remains !

E [GeV]

∆
(1

/P
T
)
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Optimisation and physics Optimisation and physics: Tracking

Optimisation and physics: Tracking

BSM case-study
Natural SUSY: Light, degenerate
higgsinos.

Natural SUSY:
m2

Z = 2
m2

Hu tan2 β−m2
Hd

1−tan2 β
− 2 |µ|2

⇒ Low fine-tuning⇒ µ = O(weak scale).
If multi-TeV gaugino masses:

χ̃0
1, χ̃0

2 and χ̃±
1 pure higgsino. Rest of SUSY at multi-TeV.

Mχ̃0
1,2
,M

χ̃±
1
≈ µ

Degenerate (∆M is 1 GeV or less)
Few, quite soft tracks.
⇒ γγ background, effect of pairs background on pat. rec.
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Optimisation and physics Optimisation and physics: Tracking

Optimisation and physics: Tracking

How to find few, soft tracks ?
The TPC has almost
continuous tracking⇒ low
(sub 1 GeV) track-finding.
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Optimisation and physics: Tracking

Momentum resolution at low
momentum: Higgsinos
Close to end-point, Eπ gives
∆(Mχ̃0

1
,Mχ̃±

1
) to ∼ 100 MeV.
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Optimisation and physics: Tracking

Gaseous detector⇒ less M.S.
⇒ better σ at lower p:
ILD,
... and an all Si tracker (with
properties like SiD tracker)
Factor 2 better at 1 GeV.
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Optimisation and physics Optimisation and physics: Tracking

Optimisation and physics: Tracking

Systematics case-study
Uncertainty on jet energy due to neutral-hadron fraction.

With the Particle-flow paradigm, error on jet-energy is highly
influenced by the worst measured particle-class: Neutral hadrons.
⇒ Number of neutral hadrons needs to be tuned.
e+e− is not pp: Need to tune to data on the market - now LEPII.
Example numbers from current tune:

particle Pythia OPAL LEP data
tune tune

p 1.2190 0.9110 0.9750 ± 0.0870
n 1.1661 0.8664
K0

S 1.1168 1.0150 1.0040 ± 0.0150
K0

L 1.1057 1.0164
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Optimisation and physics Optimisation and physics: Tracking

Optimisation and physics: Tracking

NB: Quite some dependence on tune⇒
We need to be able to do this with our data !
Fraction of neutral hadrons: K 0

S finding the key.

cτ is 2,7 cm, meaning that the average flight of a ∼ 5 GeV K 0
S is ∼

30 : In TPC.
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Optimisation and physics: Tracking

Flavour-tag case study:

Particle identification - secondary vertex reconstruction.

Identify heavy flavour
particles by secondary
vertex reconstruction:

c→ s⇒
Which one is K,
which is π ?

Particle id⇒ dE/dx in
TPC.
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Particle id⇒ dE/dx in
TPC.
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Remark on PFA and jet-energy:
WW → hadrons at 500 Gev
Average 112 GeV, 15 % below
50 GeV, 15 % above 175 GeV
⇒
PFA performance well below
45 GeV matters !
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Optimisation and physics: Other issues

For BSM: hermeticity !
When s’ matters: Ecal intrinsic resolution matters (eg. WIMPS,
low ∆(M) SUSY, ...)
For h.f. : Recent studies of π0 reconstruction and their inclusion in
secondary vertex finding→ Ecal intrinsic E and direction
resolution matters !
Trigger-less operation: DAC, data storage
PID: muons, too.
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Conclusions and recommendations

Summary

Different physics signatures emphasise different detector
properties.
A coherent optimisation must keep this in mind.
All physics is important, either by it’s own right, or to help control
systematics.
The new ideas of doing most Higgs physics at 350 GeV means
that the tracking-performance at high momentum becomes
important, again.
For BSM, hermeticity and triggerless operation is essential.
Low momentum track-finding and measurement might be
essential
Single photon energy resolution
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Conclusions and recommendations

Thank You !
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