Physics and ILD tracker optimisation

Mikael Berggren¹

¹DESY, Hamburg

Third JCL, Grenoble, France, Dec. 2014

Outline

- Introduction
- Basic optimisations
- Optimisation and physics
 - Optimisation and physics: Tracking
 - Optimisation and physics: Other issues
- Conclusions and recommendations

Strategy for Detector & Physics Benchmarking:

- 1-to-1 relation between physics measurement and one specific detector performance aspect is rare ⇒
- can we factorise the two?
- Physics studies:
 - formulate requirements on various detector performance aspects, ideally "partial derivative"
 - this includes requirements on controlling systematics.
- Detector benchmarking:
 - Test a comprehensive list of performance aspects for various detector configurations.

(From J. List in the ILD concept meeting @LCWS)

In This talk

- I will try to show how different detector issues that becomes important for different physics,
- It will not say (much) about detailed optimisation-work done for individual detector elements.
- It will try to point out the way forward, rather than to give answers

In This talk

- I will try to show how different detector issues that becomes important for different physics,
- It will not say (much) about detailed optimisation-work done for individual detector elements.
- It will try to point out the way forward, rather than to give answers

In This talk

- I will try to show how different detector issues that becomes important for different physics,
- It will not say (much) about detailed optimisation-work done for individual detector elements.
- It will try to point out the way forward, rather than to give answers

Basic optimisations

A few observations on detector-component optimisation in ILD (post DBD):

- Presently
 - Mainly has been about ECal
 - Radius
 - Sensitive detector technology
 - Number of layers
- Aimed at cost-reduction.
- Only considers JER as metric mainly for highest energy jets.

Other talks today have covered this!

- Higgs, higgs, higgs
 - What does that require ?
 - Has anything changed?
- But also: we have been asked to strengthen the BSM case.
 - What does that require ?
- ILC does precision physics ⇒ systematics control.
 - What does that require ?
- I will try to touch on aspects of these issues, looking specifically at the tracker, with a few comments on other issues.
- In no way a complete survey, Eg. nothing specific about impact-parameters.

- Higgs, higgs, higgs
 - What does that require ?
 - Has anything changed?
- But also: we have been asked to strengthen the BSM case.
 - What does that require ?
- ILC does precision physics ⇒ systematics control.
 - What does that require ?
- I will try to touch on aspects of these issues, looking specifically at the tracker, with a few comments on other issues.
- In no way a complete survey, Eg. nothing specific about impact-parameters.

- Higgs, higgs, higgs
 - What does that require ?
 - Has anything changed?
- But also: we have been asked to strengthen the BSM case.
 - What does that require ?
- ILC does precision physics ⇒ systematics control.
 - What does that require ?
- I will try to touch on aspects of these issues, looking specifically at the tracker, with a few comments on other issues.
- In no way a complete survey, Eg. nothing specific about impact-parameters.

- Higgs, higgs, higgs
 - What does that require ?
 - Has anything changed ?
- But also: we have been asked to strengthen the BSM case.
 - What does that require ?
- ILC does precision physics ⇒ systematics control.
 - What does that require ?
- I will try to touch on aspects of these issues, looking specifically at the tracker, with a few comments on other issues.
- In no way a complete survey, Eg. nothing specific about impact-parameters.

- Higgs, higgs, higgs
 - What does that require ?
 - Has anything changed ?
- But also: we have been asked to strengthen the BSM case.
 - What does that require ?
- ILC does precision physics ⇒ systematics control.
 - What does that require ?
- I will try to touch on aspects of these issues, looking specifically at the tracker, with a few comments on other issues.
- In no way a complete survey, Eg. nothing specific about impact-parameters.

Reminder:

- $\Delta(1/p_T) \propto L^{-2.5}$ (2 purely geometric + (\geq) 0.5 because of less points in TPC).
- But only linear in σ_{point} and B-field \Rightarrow
- Technologically challenging to compensate lower radius by higher B-field and/or σ_{point} .
- But please note: Stored energy in B-field $\propto B^2 V$, so at equal stored energy, a smaller detector can have a higher field.
- Also: $\sigma_{point,TPC}^2 = \sigma_0^2(\sin\phi) + \frac{C_d^2(B)}{N_{eff}(\sin\theta)}Z$, $C_d(B) \propto 1/B^2 \Rightarrow$ complicated relation, but gets better with shorter drift-length and higher B.
- Issues to be studied in the near future: please connect to the ILD optimisation phone meetings!

Recent developments in Higgs analysis: A game-changer?

- At 250 GeV, beam-spread dominating Higgs mass.
- Not so at 350: average p_{μ} approx 50% higher $\Rightarrow \Delta(p_t)$ is approx 2.5 times worse.
- Common wisdom up to now: No big deal, we'll get the mass at 250, then the rest at 350 and 500.
- True if only $Z \to leptons$ is used, which we want to do to remain model-independent, ie. with the Higgs decay making no difference.
- However, now methods and ideas are coming up to also use the hadronic decays ...
- See M. Thomson's talk in ILD@Oshu, T. Barklow @LCWS, Y. Haddad on Monday.

Recent developments in Higgs analysis: A game-changer?

- At 250 GeV, beam-spread dominating Higgs mass.
- Not so at 350: average p_{μ} approx 50% higher $\Rightarrow \Delta(p_t)$ is approx 2.5 times worse.
- Common wisdom up to now: No big deal, we'll get the mass at 250, then the rest at 350 and 500.
- True if only Z → leptons is used, which we want to do to remain model-independent, ie. with the Higgs decay making no difference.
- However, now methods and ideas are coming up to also use the hadronic decays ...
- See M. Thomson's talk in ILD@Oshu, T. Barklow @LCWS, Y. Haddad on Monday.

Recent developments in Higgs analysis: A game-changer?

- At 250 GeV, beam-spread dominating Higgs mass.
- Not so at 350: average p_{μ} approx 50% higher $\Rightarrow \Delta(p_t)$ is approx 2.5 times worse.
- Common wisdom up to now: No big deal, we'll get the mass at 250, then the rest at 350 and 500.
- True if only Z → leptons is used, which we want to do to remain model-independent, ie. with the Higgs decay making no difference.
- However, now methods and ideas are coming up to also use the hadronic decays ...
- See M. Thomson's talk in ILD@Oshu, T. Barklow @LCWS, Y. Haddad on Monday.

Error-breakdown from T. Barklow, propagating uncertainties in BSM.

1st Five Years of ILC Running

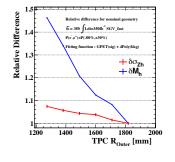
Model Independent Higgs Couplings $\Delta g_i/g_i$

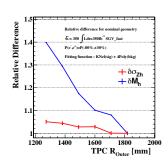
	Scenario B	Scenari	o D-500
\sqrt{s}	250 GeV	350	GeV
Ĺ	360 fb^{-1}	470	fb^{-1}
σ_{ZH} meas.	l^+l^- only	l^+l^- only	$l^+l^-+q\bar{q}$
γγ	14.9 %	11.0	11.0 %
88	5.2 %	3.3	3.1 %
WW	4.0 %	1.7	1.0 %
ZZ	1.1 %	1.5	0.72 %
$bar{b}$	4.4 %	2.4	2.0 %
$ au^+ au^-$	4.7 %	3.0	2.8 %
$c\bar{c}$	5.6 %	4.1	3.9 %
$\Gamma_T(h)$	9.6 %	7.1	4.9 %

- But, also in this case the Z → leptons gives a important contribution: they not so many, but they're much more precise.
- Higgs recoil @ 350
 GeV ⇒ the return of the detector ...

Error-breakdown from T. Barklow, propagating uncertainties in BSM.

1st Five Years of ILC Running

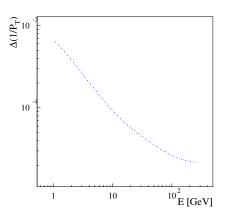

Model Independent Higgs Couplings $\Delta g_i/g_i$


	Scenario B	Scenari	o D-500
\sqrt{s}	250 GeV	350	GeV
Ĺ	360 fb^{-1}	470	fb^{-1}
σ_{ZH} meas.	l^+l^- only	l^+l^- only	$l^+l^-+q\bar{q}$
γγ	14.9 %	11.0	11.0 %
gg	5.2 %	3.3	3.1 %
WW	4.0 %	1.7	1.0 %
ZZ	1.1 %	1.5	0.72 %
$bar{b}$	4.4 %	2.4	2.0 %
$ au^+ au^-$	4.7 %	3.0	2.8 %
$c\bar{c}$	5.6 %	4.1	3.9 %
$\Gamma_T(h)$	9.6 %	7.1	4.9 %

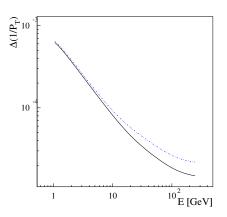
- But, also in this case the Z → leptons gives a important contribution: they not so many, but they're much more precise.
- Higgs recoil @ 350
 GeV ⇒ the return of the detector ...

Relative Difference from the nominal geometry (vs=350GeV)

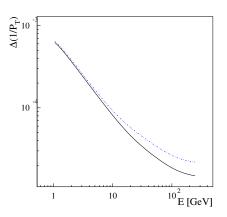
$$-$$
 Kernel(sig) + 4th Poly(bkg).

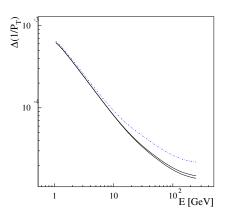


⇒ Kernel(sig) + 4th Poly(bkg).


$$-$$
 ozh precision degrades > $\frac{5}{9}$ % (R: 1.8 m ⇒ 1.4 m)

$$-$$
 Mh precision degrades $\sim 30 \%$ (R: 1.8 m \Rightarrow 1.4 m)


- How to get the best $\Delta(1/p_T)$ in ILD at high momentum ?
- Answer: The SET.
- Almost a factor 2.
- In fact, the current SET has saturated what can be achieved by a very precise external measurement, so only
 B remains I


- How to get the best $\Delta(1/p_T)$ in ILD at high momentum ?
- Answer: The SET.
- Almost a factor 2.
- In fact, the current SET has saturated what can be achieved by a very precise external measurement, so only
 B remains I

- How to get the best Δ(1/p_T) in ILD at high momentum ?
- Answer: The SET.
- Almost a factor 2.
- In fact, the current SET
 has saturated what can
 be achieved by a very
 precise external
 measurement, so only

- How to get the best Δ(1/p_T) in ILD at high momentum ?
- Answer: The SET.
- Almost a factor 2.
- In fact, the current SET has saturated what can be achieved by a very precise external measurement, so only B remains!

BSM case-study

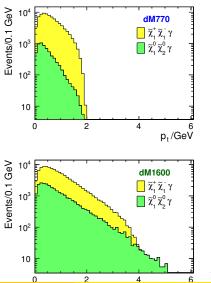
Natural SUSY: Light, degenerate higgsinos.

Natural SUSY:

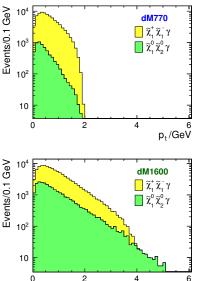
$$\bullet \ \ m_Z^2 \ = \ 2 \frac{m_{H_U}^2 \tan^2 \beta - m_{H_d}^2}{1 - \tan^2 \beta} - 2 \, |\mu|^2$$

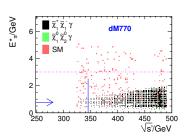
- \Rightarrow Low fine-tuning $\Rightarrow \mu = \mathcal{O}(\text{weak scale})$.
- If multi-TeV gaugino masses:
 - $\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^{\pm}$ pure higgsino. Rest of SUSY at multi-TeV.
 - $M_{\tilde{\chi}_{12}^0}$, $M_{\tilde{\chi}_{1}^{\pm}} \approx \mu$
 - Degenerate (ΔM is 1 GeV or less)
 - Few, quite soft tracks.
 - ullet $\Rightarrow \gamma \gamma$ background, effect of pairs background on pat. rec.

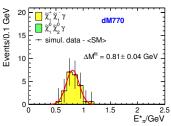
BSM case-study


Natural SUSY: Light, degenerate higgsinos.

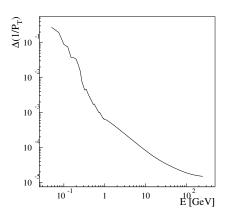
Natural SUSY:


- $m_Z^2 = 2 \frac{m_{H_u}^2 \tan^2 \beta m_{H_d}^2}{1 \tan^2 \beta} 2 |\mu|^2$
- \Rightarrow Low fine-tuning $\Rightarrow \mu = \mathcal{O}(\text{weak scale})$.
- If multi-TeV gaugino masses:
 - $\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^{\pm}$ pure higgsino. Rest of SUSY at multi-TeV.
 - $M_{\tilde{\chi}_1^0}$, $M_{\tilde{\chi}_1^{\pm}} \approx \mu$
 - Degenerate (ΔM is 1 GeV or less)
 - Few, quite soft tracks.
 - $\Rightarrow \gamma \gamma$ background, effect of pairs background on pat. rec.

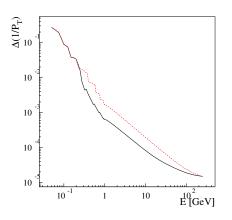

- How to find few, soft tracks?
- The TPC has almost continuous tracking ⇒ low (sub 1 GeV) track-finding.

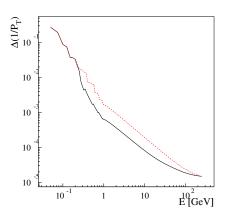


- How to find few, soft tracks?
- The TPC has almost continuous tracking ⇒ low (sub 1 GeV) track-finding.



- Momentum resolution at low momentum: Higgsinos
- Close to end-point, E_π gives $\Delta(M_{\tilde{\chi}_1^0}, M_{\tilde{\chi}_1^\pm})$ to \sim 100 MeV.




- Gaseous detector ⇒ less M.S.
 ⇒ better σ at lower p:
- ILD,
- ... and an all Si tracker (with properties like SiD tracker)
- Factor 2 better at 1 GeV.

- Gaseous detector ⇒ less M.S.
 ⇒ better σ at lower p:
- ILD,
- ... and an all Si tracker (with properties like SiD tracker)
- Factor 2 better at 1 GeV.

- Gaseous detector ⇒ less M.S.
 ⇒ better σ at lower p:
- ILD,
- ... and an all Si tracker (with properties like SiD tracker)
- Factor 2 better at 1 GeV.

Systematics case-study

Uncertainty on jet energy due to neutral-hadron fraction.

- With the Particle-flow paradigm, error on jet-energy is highly influenced by the worst measured particle-class: Neutral hadrons.
- Number of neutral hadrons needs to be tuned.
- ullet e^+e^- is not pp: Need to tune to data on the market now LEPII.
- Example numbers from current tune:

particle	Pythia	OPAL	LEP data
	tune	tune	
р	1.2190	0.9110	0.9750 ± 0.0870
n	1.1661	0.8664	
K ⁰ K ⁰	1.1168	1.0150	1.0040 ± 0.0150
K ₁ ⁰	1.1057	1.0164	

Systematics case-study

Uncertainty on jet energy due to neutral-hadron fraction.

- With the Particle-flow paradigm, error on jet-energy is highly influenced by the worst measured particle-class: Neutral hadrons.
- > Number of neutral hadrons needs to be tuned.
- e^+e^- is not pp: Need to tune to data on the market now LEPII.
- Example numbers from current tune:

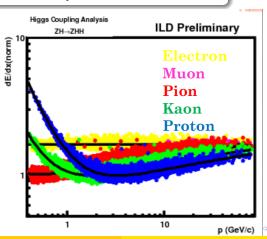
particle	Pythia	OPAL	LEP data
	tune	tune	
р	1.2190	0.9110	0.9750 ± 0.0870
n	1.1661	0.8664	
K ⁰ K ⁰	1.1168	1.0150	1.0040 ± 0.0150
K ₁ ⁰	1.1057	1.0164	

Systematics case-study

Uncertainty on jet energy due to neutral-hadron fraction.

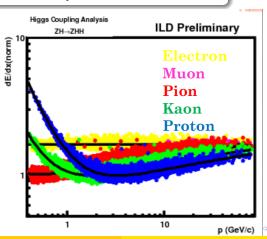
- With the Particle-flow paradigm, error on jet-energy is highly influenced by the worst measured particle-class: Neutral hadrons.
- Number of neutral hadrons needs to be tuned.
- e^+e^- is not pp: Need to tune to data on the market now LEPII.
- Example numbers from current tune:

particle	Pythia	OPAL	LEP data
	tune	tune	
р	1.2190	0.9110	0.9750 ± 0.0870
n	1.1661	0.8664	
Κ ⁰ _S Κ ⁰	1.1168	1.0150	1.0040 ± 0.0150
K^{o}_{L}	1.1057	1.0164	

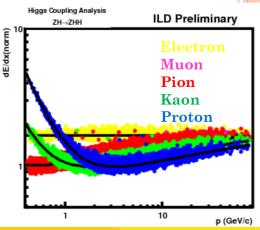

- NB: Quite some dependence on tune ⇒
- We need to be able to do this with our data!
- Fraction of neutral hadrons: K_S^0 finding the key.
- $c\tau$ is 2,7 cm, meaning that the average flight of a \sim 5 GeV K_S^0 is \sim 30 : In TPC.

- NB: Quite some dependence on tune ⇒
- We need to be able to do this with our data!
- Fraction of neutral hadrons: K_S^0 finding the key.
- $c\tau$ is 2,7 cm, meaning that the average flight of a \sim 5 GeV K_S^0 is \sim 30 : In TPC.

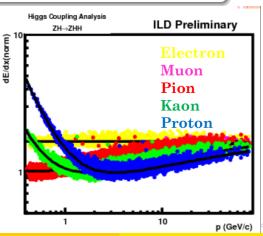
- NB: Quite some dependence on tune ⇒
- We need to be able to do this with our data!
- Fraction of neutral hadrons: K_S^0 finding the key.
- cau is 2,7 cm, meaning that the average flight of a \sim 5 GeV K_S^0 is \sim 30 : In TPC.


Flavour-tag case study:

- Identify heavy flavour particles by secondary vertex reconstruction:
 - \circ C \rightarrow S \Rightarrow
 - Which one is K, which is π?
- Particle id ⇒ dE/dx in TPC

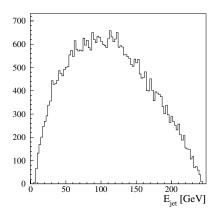

Flavour-tag case study:

- Identify heavy flavour particles by secondary vertex reconstruction:
 - \bullet c \rightarrow s \Rightarrow
 - Which one is K, which is π?
- Particle id ⇒ dE/dx in TPC


Flavour-tag case study:

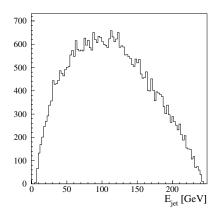
- Identify heavy flavour particles by secondary vertex reconstruction:
 - \bullet c \rightarrow s \Rightarrow
 - Which one is K, which is π?
- Particle id ⇒ dE/dx in TPC

Flavour-tag case study:


- Identify heavy flavour particles by secondary vertex reconstruction:
 - \bullet c \rightarrow s \Rightarrow
 - Which one is K, which is π?
- Particle id ⇒ dE/dx in TPC.

Optimisation and physics: Other issues

Remark on PFA and jet-energy:


- WW → hadrons at 500 Gev
- Average 112 GeV, 15 % below 50 GeV, 15 % above 175 GeV
- PFA performance well below 45 GeV matters !

Optimisation and physics: Other issues

Remark on PFA and jet-energy:

- WW → hadrons at 500 Gev
- Average 112 GeV, 15 % below 50 GeV, 15 % above 175 GeV
- PFA performance well below 45 GeV matters!

Optimisation and physics: Other issues

- For BSM: hermeticity!
- When s' matters: Ecal intrinsic resolution matters (eg. WIMPS, low $\Delta(M)$ SUSY, ...)
- For h.f. : Recent studies of π^0 reconstruction and their inclusion in secondary vertex finding \to Ecal intrinsic E and direction resolution matters !
- Trigger-less operation: DAC, data storage
- PID: muons, too.

Summary

- Different physics signatures emphasise different detector properties.
- A coherent optimisation must keep this in mind.
- All physics is important, either by it's own right, or to help control systematics.
- The new ideas of doing most Higgs physics at 350 GeV means that the tracking-performance at high momentum becomes important, again.
- For BSM, hermeticity and triggerless operation is essential.
- Low momentum track-finding and measurement might be essential
- Single photon energy resolution

Summary

- Different physics signatures emphasise different detector properties.
- A coherent optimisation must keep this in mind.
- All physics is important, either by it's own right, or to help control systematics.
- The new ideas of doing most Higgs physics at 350 GeV means that the tracking-performance at high momentum becomes important, again.
- For BSM, hermeticity and triggerless operation is essential.
- Low momentum track-finding and measurement might be essential
- Single photon energy resolution

Summary

- Different physics signatures emphasise different detector properties.
- A coherent optimisation must keep this in mind.
- All physics is important, either by it's own right, or to help control systematics.
- The new ideas of doing most Higgs physics at 350 GeV means that the tracking-performance at high momentum becomes important, again.
- For BSM, hermeticity and triggerless operation is essential.
- Low momentum track-finding and measurement might be essential
- Single photon energy resolution

Thank You!