



### ILD SiW ECAL optimisation

Trong Hieu TRAN Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3



Journées Collisionneur Linéaire Grenoble - Décembre, 2014

### Introduction

#### Motivation

◆ ILD is costly, especially SiW-ECAL & Yoke.

#### Optimisation efforts:

- Reduce ECAL number of layers (reported at LCWS12 & in DBD)
- Reduce ECAL radius (reported at LCWS13-Tokyo & JCL 2013 CEA Saclay)
- $\rightarrow$   $\rightarrow$  What if we choose to reduce at same time: radius & ECAL number of layers?
- Tau decay (1-prong): a key for any ECAL optimisation
  - tau jet is compact
  - photon separation capability is essential
- ECAL separation power
  - study based on simulation of ECAL prototype
  - comparison between GARLIC & PandoraPFA & Arbor

#### Validation of ILD models

- Simulation done with Mokka (Geant4).
- Tracking performance (important input for PFA, since 60% of jet energy from charged particles)
- PFA performance: With recent PandoraPFANew
- Photon separation studies: Garlic, Arbor

(\*) ECAL simulation meeting

### Reminder: Jet energy resolution vs Radius



### Reminder: Jet energy resolution vs radius

- JER is transformed to single JER and plotted as a function of number of layers for 91, 200, 360, 500 GeV Z → u/d/s.
- 9% of degradation is observed going from 30 to 20 layers for 91 GeV sample and more significant to lower number of layers
- effect is less important for higher energies

Single JER presented in function of Nb of layers. A cut |cos(theta\_jet)| < 0.7 is applied to avoid the Barrel/Endcap overlap area



Presented at LCWS12 & ILD DBD

SiW ECAL inner radius: 1843 mm

Single JER shown in function of number of layers. The error bars are taken from a fit.

$$\frac{\operatorname{rms}_{90}(E_j)}{E_j} = \frac{\operatorname{rms}_{90}(E_{jj})}{E_{jj}}\sqrt{2}$$

# What if we combine these two studies?

- Starting point: ILD SiW ECAL with radius at 1450 mm & 30 Si layers (5×5 mm<sup>2</sup> pixel size) sDHCAL has same thickness as in baseline design
- $\rightarrow$  performance estimation for 26 & 20 layers

#### ECAL with reduced radius and reduced number of layers

- Starting point: ILD SiW ECAL with inner radius 1450 mm & 30 Si layers
- Try to reduce number of Si layers to 26 or 20 (25 or 19 W layers)



### Jet energy resolution vs Number of layers

Jet energy resolution presented in terms of RMS90 as a function of number of layers.

Difference of JER for 30- and 26layer ECAL is small.



|                | Jet energy (GeV) |      |      |      |      |  |
|----------------|------------------|------|------|------|------|--|
| # Si<br>layers | 91               | 140  | 200  | 360  | 500  |  |
| 20             | 4.47             | 3.85 | 3.56 | 3.50 | 3.55 |  |
| 26             | 4.18             | 3.65 | 3.46 | 3.45 | 3.45 |  |
| 30             | 4.05             | 3.68 | 3.28 | 3.35 | 3.48 |  |

#### ECAL inner radius: 1450 mm

### JER vs generated energy



# Tau analysis

- Tau jet is compact
- Capability of separation of photons is essential
- Study restarted for full ILD simulation with reduced SiW ECAL radius
- GARLIC is used for photon reconstruction

Aim to estimate branching fraction of different tau decay modes. (Mostly 1-prong.)

| [%]         | $\pi^{sim}$ | $ ho^{sim}$ | $a_1^{sim}$ | other |
|-------------|-------------|-------------|-------------|-------|
| $\pi^{rec}$ | 95.5        | 2.7         | 0.6         | 49.1  |
| $ ho^{rec}$ | 4.2         | 90.2        | 12.5        | 21.8  |
| $a_1^{rec}$ | 0.0         | 5.9         | 85.0        | 19.7  |
| rejected    | 0.3         | 1.2         | 1.9         | 9.3   |

Study done for ILD baseline design M. Reinhard's thesis

## Tau decay modes

Topologically: 3 decay modes (1,3,5-prong)

1-prong: single charged pion and any number of  $\pi^0$ 3-prong:  $\pi^+\pi^-\pi^+$ 

| Branching fraction |
|--------------------|
| $17.85 \pm 0.05\%$ |
| $17.36 \pm 0.05\%$ |
| $10.91 \pm 0.07\%$ |
| $25.52 \pm 0.10\%$ |
| $9.27 \pm 0.12\%$  |
| $8.99 \pm 0.06\%$  |
| 10.10%             |
|                    |



#### Branching fraction of main decays

# Sample(s)

DBD generators  $e^+e^- \rightarrow Z \rightarrow \tau^-\tau^+$ at 250 GeV C.M. energy (mixed with  $e^+e^- \rightarrow Z \rightarrow \mu^-\mu^+$  $\rightarrow$  preselection of  $\tau$  events using generator informations)





Two independent Tau-decay are used (double statistics)



The two tau's are back-to-back in the Z-rest frame

# Example (1)



# Example (2)



### Reconstruction quality



Trong Hieu TRAN

# Comparison R=1843 vs R=1400 mm:

invariant mass

KnownRecInvNbPho2Mrhonu1843



decay in the sample. To be updated.)

# Comparison R=1843 vs R=1400 mm: Nb of reconstructed photons



### Particle separation power

- Task:  $e^+-e^+$ ,  $e^+-h^+$  shower separation
  - TB FNAL'11 data, cannot be shown, absence of CALICE NOTE:(
  - comparison with MC (only ECAL in TB geometry)
- Event creation and reconstruction:
  - $\bullet$  transition TB geometry  $\rightarrow$  ILD geometry
  - overlay: particle + shifted paricle (by 0,1,...,11 cells , CellSize=1x1cm<sup>2</sup>)
  - absence of tracks:  $e^+ \to \gamma$  and  $\pi^+ \to {\rm MC}$  track was created in ILD geometry
- "Correct" separation (for each reconstructed particle):
  - Reconstructed Energy = Initial Energy  $\pm 20\%$
  - Reconstructed Barycentre = Initial Barycentre  $\pm 5mm$

### Event display: $\gamma + \gamma$ at 4+4 GeV



#### Reconstruction: ARBOR (left), PANDORA (middle), GARLIC (right)

Trong Hieu TRAN

### $\gamma - \gamma$ separation



Trong Hieu TRAN

#### ILD SiW ECAL optimisation

### $\gamma$ – hadron separation



Shift=10 cm

Figure : Reconstruction: PANDORA (left), GARLIC (right)

### $\gamma$ – hadron separation



### Summary

- Performance studies
  - ECAL reduced number of layers with  $R_{ECAL}^{(inner)}$  = 1450mm
  - Ongoing: tau jet reconstruction (1-prong)
  - Particle separation:
- Reduction of SiW ECAL layers:
  - Difference in term of performance for 25 and 29 W layers ECAL (R=1450mm) is small
- First look at tau decay with ECAL inner radius 1843 mm and 1400:
  - Visually, the separation of tau jet photons is less clear for R=1400m
  - However, Garlic is still able to give reasonable number of photons
  - Analysis is to be updated with (much) higher statistics and to be extended to sqrt(s)=500 GeV

#### Particle separation power:

- GARLIC and ARBOR seems to be better than PandoraPFANew
- A couple of issues to be understood  $\rightarrow$  CALICE NOTE (on test beam data)

### Backup slides

### Jet energy resolution vs $cos(\theta_jet)$



- Jet energy resolution presented in function of cos(θ) of first jet
- No significant problem found among full region of cos(θ)
- Example for  $Z \rightarrow uds$  91 GeV sample

### Energy resolution for gamma

 $\gamma$  energy resolution vs Radius



 $\rightarrow$  no changes in resolution for single photon events

### Single particle resolution: muon's



Momentum resolution of muons' at different energies for different radii.

Degradation by, e.g., 40% for muons' at 50 GeV.

Or in terms of resolution of  $1/\ensuremath{\mathsf{P}_{\mathsf{T}}}$  of track.

Degradation in  $1/P_{T}$  resolution by

~60% from radius 1843 to 1400 mm.



### $Z \rightarrow uds$ events: linearity



### Photon energy resolution



- Photon energy resolution shown in function of generated photon energy for different ECAL models (left) and in function of number of layers for different energy (right)
- Slight degradation observed going from 30 to 20 layers and quite significant with smaller number of layers (16 downto 10)

### Jet energy resolution vs $E_{jet}$



- At low energy, JER is dominated by intrinsic calorimeter resolution – mainly HCAL (1/sqrt(E))
- At higher energy (250GeV) confusion term dominates → JER increases
- R=1200 mm does not seem to be a good option

### Effect of tracking on JER



- Tracking performance degrades for small radii → effect on PFA performance need to be checked
- Use MC truth tracks as input for PandoraPFA
- Slight difference observed but not dramatic

### Change of B-field

- ILD with Ecal inner radius at 1.4 m is chosen for the study
- Increase default B field (3.5 T) by a factor of 1.1, 1.2 and 1.3 → 3.85, 4.20 and 4.55 T



 Improvement at high energies – confusion reduced

### JER for different ILD setups

30 Si layers

| P (mm)                     | E <sub>jet</sub> (GeV) |      |            |            |  |
|----------------------------|------------------------|------|------------|------------|--|
| R <sub>ECAL</sub> (IIIIII) | 45                     | 100  | <u>180</u> | <b>250</b> |  |
| <u>1843</u>                | 3.85                   | 3.01 | 2.97       | 3.06       |  |
| 1400                       | 4.14                   | 3.35 | 3.39       | 3.64       |  |

R<sub>ECAL</sub><sup>inner</sup> = 1450 mm

|                | Jet energy (GeV) |      |      |      |      |
|----------------|------------------|------|------|------|------|
| # Si<br>layers | 91               | 140  | 200  | 360  | 500  |
| 20             | 4.47             | 3.85 | 3.56 | 3.50 | 3.55 |
| 26             | 4.18             | 3.65 | 3.46 | 3.45 | 3.45 |
| 30             | 4.05             | 3.68 | 3.28 | 3.35 | 3.48 |

### **ILD** layout



Trong Hieu TRAN

#### ILD SiW ECAL optimisation