CMOS Pixel Technologies R&D state of the art

Alejandro Pérez IPHC – CNRS Strasbourg

On behalf of the PICSEL team of IPHC

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

HYSICS WITH INTEGRATED CMOS SENSORS AND ELECTRON MACHINE

Outline

- Motivations for developing CMOS Pixel Sensors (CPS) beyond STAR-PXL
- Main characteristics of the real scale sensor FSBB-M fabricated in 2014
- Beam test based performance assessment of the FSBB-M sensor
- Summary and outlook

State-of-the-Art: STAR-PXL (The Sensor)

ULTIMATE main characteristics

- CMOS sensor (0.35μm AMS) high-resistive Epi-layer-15μm Sensor thinned to 50μm (total thickness)
- Column || architecture with in-pixel CDS & amplification
- End-of-column discriminator & binary charge encoding, followed by $\varnothing\mbox{-suppression}$
- 960x928 (columns x rows): pitch 20.7µm (19.9x19.2 mm²)
- $t_{r_0} \leq 200 \mu s$ (~5x10³ frames/s) \Rightarrow suited to > 10⁶ part./cm²/s
- 2 outputs @ 160 MHz
- Power consumption ~150mW/cm²
- Running at room temp. (T = 30C°)

ULTIMATE Performances

- $\sigma_{sp} \gtrsim 3.5 \mu m$
- Efficiency ≤ 99.9%
- Fake rate $\leq 10^{-5}$

State-of-the-Art: STAR-PXL (I)

STAR-PXL HALF-BARREL

- 2 layers: 20 ladders (0.37% X₀)
- 200 sensors
- 180x10⁶ pixels
- Air flow cooling: $T < 35^{\circ}C$
- $\sigma_{sp} < 4\mu m$
- Rad. Load 150kRad + 3x10¹² n.e.q (Full life-time)
 - t_{o.r.} < 200µs

1st CMOS Pixel Sensor in a collider experiment !

State-of-the-Art: STAR-PXL (II)

STAR-PXL HALF-BARREL

- 2 layers: 20 ladders (0.37% X₀)
- 200 sensors
- 180x10⁶ pixels
- Air flow cooling: $T < 35^{\circ}C$
- σ_{sp} < 4μm
- Rad. Load 150kRad + 3x10¹² n.e.q (Full life-time)

Next generation of High Precision Tracking & Vertexing Devises U FASTER and MORE RADIATION TOLERANT CMOS Pixel Sensors (CPS)

Forthcoming device: New ALICE Inner Tracking System (ITS)

CMOS Process Transition: STAR-PXL \rightarrow ALICE-ITS

- Use of PMOS in pixel array not allowed because any additional N-well hosting PMOS would compete for charge collection with sensing node
- Limits choice of readout architecture strategy
- Already demonstrate excellent performances
 - STAR-PXL: Mi-28 designed in AMS-0.35 μ m process $\Rightarrow \epsilon_{det} > 99.5\%$, $\sigma_{sp} < 4\mu$ m
 - 1st CPS detector at collider experiment

- N-well hosting PMOS transistors is shielded by deep-P-well \Rightarrow both types of transistors can be used
- Widens choice of readout architecture strategies
 - Ex. ALICE-ITS upgrade: 2 sensors R&D in || using TOWER CIS 0.18um process (quadrupole well)
 - → Synchronous Readout R&D:
 proven architecture ⇒ safety
 - Asynchronous Readout R&D: challenging

Synchronous readout Architecture: Rolling Shutter Mode

- Power: only the selected rows (N=1,2,3 ...) to be readout
- Speed: N rows of pixels are readout in ||
 - > Integration-time (t_{int}) = frame readout time $\Rightarrow t_{int}$

Alejandro Pérez, 3rd JCL Meeting, Dec. 1th 2014

(Row readout time) \times (No. of Rows)

Prototypes Fabricated to Explore the Full Sensor Chain

Alejandro Pérez, 3rd JCL Meeting, Dec. 1th 2014

FSBB-M0 (= MISTRAL) Fabricated in Spring 2014

- TJsc-0.18 CIS process, HR (~1k Ω cm) 18µm epitaxy, thinned to 50µm
- Staggered pixel: $22x33 \ \mu m^2$ including pre-amplification and clamping with 6 metal layers (ML)
- 416x416 of Columns x Row of pixels ended by discriminator (8-cols with analogue output)
- Double-row readout at 160MHz clock frequency $\Rightarrow t_{int} = 40 \mu s$
- On-chip 3-stage sparsification: SUZE-02
- 4 Memories of 512x32 bits
- 2 output nodes at 320Mbits/s (used only one for TB)
- Integrated JTAG and regulators
- Sensitive area ~ 1.2cm²
- Two versions fabricated (FSBB-M0 a & b)
 - FSBB-M0a: sensing node size variation
 - FSBB-M0b: input transistor of in-pixel pre-amplifier
- Design not optimized in terms of
 - Pixel dimensions
 - Power consumption
 - Readout speed
 - ITS layer, layout
 - > In-pixels circuitry and discriminator
 - Epitaxy parameters

FSBB-M0 (= MISTRAL) Fabricated in Spring 2014

- TJsc-0.18 CIS process, HR (~1k Ω cm) 18µm epitaxy, thinned to 50µm
- Staggered pixel: $22x33 \ \mu m^2$ including pre-amplification and clamping with 6 metal layers (ML)
- 416x416 of Columns x Row of pixels ended by discriminator (8-cols with analogue output)
- Double-row readout at 160MHz clock frequency $\Rightarrow t_{int} = 40 \mu s$
- On-chip 3-stage sparsification: SUZE-02
- 4 Memories of 512x32 bits
- 2 output nodes at 320Mbits/s (used only one for TB)
- Integrated JTAG and regulators
- Sensitive area ~ 1.2cm²
- Two versions fabricated (FSBB-M0 a & b)
 - FSBB-M0a: sensing node size variation
 - FSBB-M0b: input transistor of in-pixel pre-amplifier
- Design not optimized in terms of
 - Pixel dimensions
 - Power consumption
 - Readout speed
 - ITS layer, layout
 - > In-pixels circuitry and discriminator
 - Epitaxy parameters

Beam-Test: Experimental conditions and set-up

Beam conditions at CERN on Oct. 2014

- SPS H6A area
- 120 GeV π⁻
- Particle flux: trigger rate ~2.5 to 100 kHz / 5x10 mm²

Device used for the tests

- 6 FSBB-M0a thinned to 50μm
- Most of the measurements with sub-array B (80k pixels), less cross-couplings than sub-array A

Data Collected (mainly on October 18-19th)

- 3.7x10⁶ triggers collected with beam
- Reconstructed tracks for performances assessment
 - > 11µm² diode: ~400k
 - 9µm² diode: ~300k
- 8.5×10^6 frames collected without beam for noise determination \Rightarrow fake rate studies
- All measurements performed at $T_{00} = 30^{\circ}C$

FSBB-MOA		A	D
	FSBB-M0a	16.87x9.2mm2	

Residue on DUT: $\sigma_{res} \approx (4.7 \pm 0.1) \ \mu m \ (U) \ \& \ (4.9 \pm 0.1) \ \mu m \ (V) \ at \ 6mV$ for both diode sizes

Expected resolution: $\sigma_{so} \approx 4.5 \ \mu m$ (tbc)

Multiplicity depends on where the track hits the sensor with respect to the collection diode
 ⇒ resolution is then a function of multiplicity

Multiplicity depends on where the track hits the sensor with respect to the collection diode \Rightarrow resolution is then a function of multiplicity

Track position distribution vs associated hit multiplicity

Alejandro Pérez, 3rd JCL Meeting, Dec. 1th 2014

Multiplicity depends on where the track hits the sensor with respect to the collection diode \Rightarrow resolution is then a function of multiplicity

- Multiplicity depends on where the track hits the sensor with respect to the collection diode
 ⇒ resolution is then a function of multiplicity
- 9 μm² diode: threshold at 5mV

18

Asynchronous readout Architecture ALPIDE (Alice Pixel DEtector)

- Concept similar to hybrid pixel readout architecture
 - Tower CIS quadrupole well process: both N & P MOS can be used
- Continuously power active in each pixel
 - Low power consumption analogue front-end (< 50nW/pixel) based on single stage amplifier with shaping / current comparator
 - High gain ~100
 - > Shaping time few μ s
 - Dynamic memory cell, ~80fF storage capacitor which is discharged by an NMOS controlled by the front-end
- Data driven readout of the pixel matrix, only zero-suppressed data transferred to periphery

ALPIDE Architecture Validation

900

800

700

600 500

400 300 200

Diameter

0

Spacing

а

Time lus

1st **step:** pALPIDE to validate fast pixel readout

- 64x512 columns x rows ($22 \times 22 \ \mu m^2$)
- Analog output of one pixel tested with ⁵⁵Fe source ⇒ expected time resolution
- 2nd step: full scale ALPIDE
 - Final sensor dimensions: 15 × 30 mm²
 - ~ 500k pixels of $28 \times 28 \ \mu m^2$
 - 4 different sensing node geometries
 - Possibility of reverse biasing the substrate

Summary and outlook

- Ist FSBB (1.2cm² sensitive area) composing MISTRAL sensor (4.2cm² sensitive area) fabricated & successfully (but not completely) assessed on beam at T = 30°C
 - $\varepsilon_{det} \sim 99.8\%$ for fake rate < 10⁻⁶
 - $\sigma_{sn} < 5\mu m$ with 22x33 um² pixels
- Some layout shortcomings observed (e.g. x-couplings in peripheral circuitry)
 - Corrections implemented in FSBB-M0bis, submitted to foundry
- Next steps
 - 2015: fabrication of full scale MISTRAL prototype ALICE-ITS outer layers

- Potential of FSBB-M/MISTRAL architecture well suited for ILD-VXD. E.g.
 - $17x17 \ \mu m^2$ pixels: $\sigma_{sp} < 3\mu m \& t_{int} \sim 30-40\mu s$ (tbc)
 - $17 \times 102 \ \mu m^2$ pixels: $\sigma_{sp} < 6 \mu m \& t_{int} \sim 5 \mu s$ (tbc)
 - See A. Besson's talks for more on perspectives for ILD-VXD

Back up Slides

Next Forthcoming device: CBM Micro-Vertex Detector (MVD)

Device under Study: ILC Vertex Detector

ILD-VXD at ILC

3 double-sided layers

- $\sigma_{sp} \leq 3 \,\mu m$
- \sim 0.3 % X₀ / layer
- Radiation load: O(100) kRad +
 O(10¹¹) n_{eq}/cm² (1yr)

24

Beam-Test: Main goals and data collected

Main goals (mainly with sub-array B)

- Validate pixel geometry for $\sigma_{sn} \sim 5\mu m$
- Determine detection efficiency (ε_{det})
- Determine working range with
 - $\sim \epsilon_{det} > 99\%$
 - ≻ Fake hit rate < 10⁻⁵
- Study impact of present cross-coupling effects

Running parameters varied

- Discriminator thresholds: $4 \rightarrow 12 \text{ mV}$
- Beam flux: $0.78 \rightarrow 11.6$ hits/cm²/frame (average value)
- Incidence angle of beam particle on DUT: 0 or \sim 45° (ITS maximum peudo-rapidity \sim 55°)
- Comparison of sub-array A to sub-array B
- V_{REE}(discri.): external (cable on chip) vs internal (SDS)

z-axis

Alejandro Pérez, 3rd JCL Meeting, Dec. 1th 2014

120 GeV π^- beam

FSBB-M0 inspired from STAR-PXL Chip

STAR-PXL PRELIMINARY results (courtesy of STAR collaboration) :

- Data collected with low luminosity (clean TPC environment)
- \circ Tracks traversing the ladders equipped with AI traces \mapsto resolution on DCA

 \mapsto very similar to ITS objectives

Comparison of Small Diode to MIMOSA-22THRa1

2

MIMOSA-22THRa1: 4.4 GeV e⁻ beam

- HR (~2kΩcm) 20µm epitaxial layer
- 128 columns of 320 pixels
- No SDS, thresholds dispersion ignored
- Pixel dimensions: 22x33μm² (11μm² diode)
- Pixel amp input Trans: L/W = 0.36/1 μ m

- **FSBB-M0a (small diode):** 120 GeV π^- beam
 - HR (~1kΩcm) 18µm epitaxial layer
 - 2x208 columns of 416 pixels
 - Discri. outputs processed with SDS
 - Pixel dimensions: 22x33μm² (9μm² diode)
 - Pixel amp. input Trans: L/W = $0.27/1.5 \mu m$
 - Noise increased by cross-coupling (mainly FPN)

Alejandro Pérez,

Beam-Test: Detection Performances vs Trigger Rate

- Data taken at different trigger rates: 2.5 (default value), 25 and 100 kHz
- Measurements performed with high threshold settings: 8mV

Beam-Test: Detection Performances vs Trigger Rate

- Data taken at different trigger rates: 2.5 (default value), 25 and 100 kHz
- Measurements performed with high threshold settings: 8mV

No sensitivity to hit rate observed (deeper analysis under way)

Alejandro Pérez, 3rd JCL Meeting, Dec. 1th 2014

Beam-Test: Detection Performances at High Incidence Angle

Data taken with trigger rate of 2.5 kHz and 6mV threshold

Increase in ε_{det} and multiplicity at high angles

- Increase in U-residue mainly due to the increase in multiplicity in this direction
- No change in V-residue as expected