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OutlineOutline

Motivations for developing CMOS Pixel Sensors (CPS) beyond STAR-PXL

Main characteristics of the real scale sensor FSBB-M fabricated in 2014

Beam test based performance assessment of the FSBB-M sensor

Summary and outlook
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State-of-the-Art: STAR-PXL (The Sensor)State-of-the-Art: STAR-PXL (The Sensor)

ULTIMATE main characteristics
● CMOS sensor (0.35m AMS) high-resistive Epi-layer-15m

Sensor thinned to 50m (total thickness)
● Column || architecture with in-pixel CDS & amplification
● End-of-column discriminator & binary charge encoding, 

followed by -suppression
● 960x928 (columns x rows): pitch 20.7m (19.9x19.2 mm2)

● t
r.o.

 < 200s (~5x103 frames/s)  suited to > 106 part./cm2/s

● 2 outputs @ 160 MHz
● Power consumption ~150mW/cm2

● Running at room temp. (T = 30Co)

MIMOSA-28MIMOSA-28

(ULTIMATE)(ULTIMATE)

~

ULTIMATE Performances

● 
sp

 > 3.5m

● Efficiency < 99.9%
● Fake rate < 10-5

~

~

~
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State-of-the-Art: STAR-PXL (I)State-of-the-Art: STAR-PXL (I)

STAR-PXL HALF-BARREL
● 2 layers: 20 ladders (0.37% X

0
)

● 200 sensors
● 180x106 pixels
● Air flow cooling: T < 35oC

● 
sp

 < 4m

● Rad. Load 150kRad + 3x1012 n.e.q

(Full life-time)

● t
o.r.

 < 200s

11stst CMOS Pixel  CMOS Pixel 
Sensor in a Sensor in a 

collider collider 
experiment !experiment !

Data Taking from Data Taking from 
March-June 2014March-June 2014
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State-of-the-Art: STAR-PXL (II)State-of-the-Art: STAR-PXL (II)

STAR-PXL HALF-BARREL
● 2 layers: 20 ladders (0.37% X

0
)

● 200 sensors
● 180x106 pixels
● Air flow cooling: T < 35oC

● 
sp

 < 4m

● Rad. Load 150kRad + 3x1012 n.e.q

(Full life-time)

● t
o.r.

 < 200s

11stst CMOS Pixel  CMOS Pixel 
Sensor in a Sensor in a 

collider collider 
experiment !experiment !

11stst CMOS Pixel  CMOS Pixel 
Sensor in a Sensor in a 

collider collider 
experiment !experiment !

STAR-PXL (R) STAR-PXL (Z)
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Next generation of High Precision
Tracking & Vertexing Devises


FASTERFASTER and MORE RADIATION TOLERANTMORE RADIATION TOLERANT

CMOS Pixel Sensors (CPS)
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Forthcoming device: Forthcoming device: New ALICE Inner Tracking System (ITS)New ALICE Inner Tracking System (ITS)

● 
sp

 < 5(10)m inner (outer) layers

● ~ 0.3 % X
0
 / layer

Upgrade of ALICE-ITS at LHCUpgrade of ALICE-ITS at LHC
7 layers > 10m2 active area (>> 104 CPS)

~
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CMOS Process Transition: STAR-PXL CMOS Process Transition: STAR-PXL   ALICE-ITS ALICE-ITS

● Use of PMOS in pixel array not allowed because 
any additional N-well hosting PMOS would 
compete for charge collection with sensing node

● Limits choice of readout architecture strategy
● Already demonstrate excellent performances

➢ STAR-PXL: Mi-28 designed in AMS-0.35m 
process  

det
 > 99.5%, 

sp
 < 4m

➢ 1st CPS detector at collider experiment

● N-well hosting PMOS transistors is shielded by deep-
P-well  both types of transistors can be used

● Widens choice of readout architecture strategies
➢ Ex. ALICE-ITS upgrade: 2 sensors R&D in || 

using TOWER CIS 0.18um process (quadrupole 
well)

➔ Synchronous Readout R&D:

proven architecture  safety
➔ Asynchronous Readout R&D: challenging

Twin well process: 0.6-0.35 um Quadrupole well process (deep P-well): 0.18 um

MIMOSA-28MIMOSA-28

(ULTIMATE)(ULTIMATE)



Alejandro Pérez,    3rd JCL Meeting, Dec. 1th 2014 9

Synchronous readout Architecture: Synchronous readout Architecture: Rolling Shutter ModeRolling Shutter Mode

Design addresses 3 issues
● Increasing S/N at pixel-level
● Analogue to Digital Conversion

➢ At end of column  MISTRAL
➢ Inside pixel           ASTRAL

● Zero suppression (SUZE) at chip edge

Power vs Speed
● Power: only the selected rows (N=1,2,3 …) to be readout 
● Speed: N rows of pixels are readout in ||

➢ Integration-time (t
int

) = frame readout time  
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Prototypes Fabricated to Explore the Full Sensor ChainPrototypes Fabricated to Explore the Full Sensor Chain
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FSBB-M0 (FSBB-M0 (   MISTRAL) Fabricated in Spring 2014MISTRAL) Fabricated in Spring 2014
● TJsc-0.18 CIS process, HR (~1kcm) 18m epitaxy, thinned to 50m
● Staggered pixel: 22x33 m2 including pre-amplification and clamping with 6 metal layers (ML)
● 416x416 of Columns x Row of pixels ended by discriminator (8-cols with analogue output)

● Double-row readout at 160MHz clock frequency  t
int

 = 40s

● On-chip 3-stage sparsification: SUZE-02
● 4 Memories of 512x32 bits
● 2 output nodes at 320Mbits/s (used only one for TB)
● Integrated JTAG and regulators
● Sensitive area ~ 1.2cm2

● Two versions fabricated (FSBB-M0 a & b)
➢ FSBB-M0a: sensing node size variation
➢ FSBB-M0b: input transistor of in-pixel pre-amplifier

Diode: 9 m2

trans: 1.5/0.28 m

Diode: 10.9 m2

trans: 1.5/0.28 m

FSBB-M0a FSBB-M0b

Diode: 10.9 m2

Trans: 2.0/0.36 m

Diode: 10.9 m2

trans: 1.5/0.18 m

41
6 

ro
w

s

416 columns

● Design not optimized in terms of
➢ Pixel dimensions
➢ Power consumption
➢ Readout speed
➢ ITS layer, layout
➢ In-pixels circuitry and discriminator
➢ Epitaxy parameters
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FSBB-M0 (FSBB-M0 (   MISTRAL) Fabricated in Spring 2014MISTRAL) Fabricated in Spring 2014
● TJsc-0.18 CIS process, HR (~1kcm) 18m epitaxy, thinned to 50m
● Staggered pixel: 22x33 m2 including pre-amplification and clamping with 6 metal layers (ML)
● 416x416 of Columns x Row of pixels ended by discriminator (8-cols with analogue output)

● Double-row readout at 160MHz clock frequency  t
int

 = 40s

● On-chip 3-stage sparsification: SUZE-02
● 4 Memories of 512x32 bits
● 2 output nodes at 320Mbits/s (used only one for TB)
● Integrated JTAG and regulators
● Sensitive area ~ 1.2cm2

● Two versions fabricated (FSBB-M0 a & b)
➢ FSBB-M0a: sensing node size variation
➢ FSBB-M0b: input transistor of in-pixel pre-amplifier

● Design not optimized in terms of
➢ Pixel dimensions
➢ Power consumption
➢ Readout speed
➢ ITS layer, layout
➢ In-pixels circuitry and discriminator
➢ Epitaxy parameters FSBB-M0 mounted on PCBFSBB-M0 mounted on PCB
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Beam-Test: Experimental conditions and set-upBeam-Test: Experimental conditions and set-up

Beam conditions at CERN on Oct. 2014
● SPS H6A area
● 120 GeV 

● Particle flux: trigger rate ~2.5 to 100 kHz / 5x10 mm2

Device used for the tests
● 6 FSBB-M0a thinned to 50m
● Most of the measurements with sub-array B (80k 

pixels), less cross-couplings than sub-array A

Data Collected (mainly on October 18-19th)
● 3.7x106 triggers collected with beam
● Reconstructed tracks for performances assessment

➢ 11m2 diode: ~400k
➢  9m2 diode: ~300k

● 8.5x106 frames collected without beam for noise 
determination  fake rate studies

● All measurements performed at T
op

 = 30oC

A B

F
S

B
B

-M
0a

6 FSBB-M0a6 FSBB-M0a

Trigger (scintillator)Trigger (scintillator)

  beam beam
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Beam-Test: Detection PerformancesBeam-Test: Detection Performances


det

, fake rate, 
res

 vs discriminator threshold (Noise averaged over 11 thinned sensors)

Efficiency

U residue

V residue

Fake rate

Fake rate (mask 20 pix)

Residue on DUT:        
res

  (4.7  0.1) m (U) & (4.9  0.1) m (V) at 6mV for both diode sizes

Expected resolution: 
sp

  4.5 m (tbc)

Diode size (m2) 
det

 > 99.8% 
det

 > 99.5% 
det

 > 99.0% fake < 10-5

11.0 < 6.0 mV < 6.5 mV < 8.0 mV > 6.0 mV

9.0 < 6.0 mV < 7.0 mV < 8.0 mV > 5.0 mV

~

~

~ ~

~

~ ~

~

~ ~

~

~

Discriminator 
Thresholds
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Beam-Test: Spatial resolution vs cluster multiplicityBeam-Test: Spatial resolution vs cluster multiplicity

9 m2 diode: threshold at 5mV

Multiplicity depends on where the track hits the sensor with respect to the collection diode

 resolution is then a function of multiplicity

Residue distribution U Residue distribution V
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Beam-Test: Spatial resolution vs cluster multiplicityBeam-Test: Spatial resolution vs cluster multiplicity

9 m2 diode: threshold at 5mV

Multiplicity depends on where the track hits the sensor with respect to the collection diode

 resolution is then a function of multiplicity

Collection diode position

Track position distribution vs associated hit multiplicity
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Beam-Test: Spatial resolution vs cluster multiplicityBeam-Test: Spatial resolution vs cluster multiplicity

9 m2 diode: threshold at 5mV

Multiplicity depends on where the track hits the sensor with respect to the collection diode

 resolution is then a function of multiplicity
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Beam-Test: Spatial resolution vs cluster multiplicityBeam-Test: Spatial resolution vs cluster multiplicity

9 m2 diode: threshold at 5mV

Multiplicity depends on where the track hits the sensor with respect to the collection diode

 resolution is then a function of multiplicity

11 m2 diode: threshold at 5mV
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Asynchronous readout ArchitectureAsynchronous readout Architecture
ALPIDE (Alice Pixel DEtector)ALPIDE (Alice Pixel DEtector)

Concept similar to hybrid pixel readout architecture
● Tower CIS quadrupole well process: both N & P MOS can be used

Continuously power active in each pixel
● Low power consumption analogue front-end (< 50nW/pixel) based on single stage 

amplifier with shaping / current comparator
➢ High gain ~100
➢ Shaping time few s

● Dynamic memory cell, ~80fF storage capacitor which is discharged by an NMOS 
controlled by the front-end

Data driven readout of the pixel matrix, only zero-suppressed data transferred to periphery
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1st step: pALPIDE to validate fast pixel readout
● 64x512 columns x rows (22  22 m2)
● Analog output of one pixel tested with 55Fe source

expected time resolution

ALPIDE Architecture ValidationALPIDE Architecture Validation

2nd step: full scale ALPIDE
● Final sensor dimensions: 15  30 mm2

● ~ 500k pixels of 28  28 m2

● 4 different sensing node geometries
● Possibility of reverse biasing the substrate
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Summary and outlookSummary and outlook

1st FSBB (1.2cm2 sensitive area) composing MISTRAL sensor (4.2cm2 sensitive area) 
fabricated & successfully (but not completely) assessed on beam at T = 30oC

● 
det

 ~ 99.8% for fake rate < 10-6

● 
sp

 < 5m with 22x33 um2 pixels

Some layout shortcomings observed (e.g. x-couplings in peripheral circuitry)
● Corrections implemented in FSBB-M0bis, submitted to foundry

Next steps
● 2015: fabrication of full scale MISTRAL prototype ALICE-ITS outer layers

Potential of FSBB-M/MISTRAL architecture well 
suited for ILD-VXD. E.g.

● 17x17 m2 pixels:   
sp

 < 3m & t
int

 ~ 30-40s (tbc)

● 17x102 m2 pixels: 
sp

 < 6m & t
int

 ~ 5s        (tbc)

● See A. Besson's talks for more on 
perspectives for ILD-VXD
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Back up SlidesBack up Slides
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Next Forthcoming device: Next Forthcoming device: CBM Micro-Vertex Detector (MVD)CBM Micro-Vertex Detector (MVD)

● 
sp

 < 5 m

● ~ 0.5 % X
0
 / station

● Radiation load: > 1013n
eq

/cm2

CBM-MVD at FAIR/GSICBM-MVD at FAIR/GSI
3 double-sided stations in vacuum at T < 0oC

~

~
ALICE-ITS 2018/19
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Device under Study: Device under Study: ILC Vertex DetectorILC Vertex Detector

● 
sp

 < 3 m

● ~ 0.3 % X
0
 / layer

● Radiation load: O(100) kRad + 

O(1011) n
eq

/cm2 (1yr)

~

ALICE-ITS 2018/19 CBM-MVD > 2020

ILD-VXD at ILCILD-VXD at ILC
3 double-sided layers

ILDILD

ILD-VXDILD-VXD
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Beam-Test: Main goals and data collectedBeam-Test: Main goals and data collected

Main goals (mainly with sub-array B)
● Validate pixel geometry for 

sp
 ~ 5m

● Determine detection efficiency (
det

)

● Determine working range with

➢ 
det

 > 99%

➢ Fake hit rate < 10-5

● Study impact of present cross-coupling effects

Running parameters varied
● Discriminator thresholds: 4  12 mV
● Beam flux: 0.78 11.6 hits/cm2/frame (average value)
● Incidence angle of beam particle on DUT: 0 or ~45o

(ITS maximum peudo-rapidity ~ 55o)
● Comparison of sub-array A to sub-array B
● V

REF
(discri.):  external (cable on chip) vs internal (SDS)

120 GeV  beam

45o

z-axis

z-axis

x-
ax

is
y-

ax
is

Ref planes Ref planes

D
U

T

Ref planes

DUT

Tr
ig

g
er

Tr
ig

g
er
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Comparison of Small Diode to MIMOSA-22THRa1Comparison of Small Diode to MIMOSA-22THRa1

MIMOSA-22THRa1: 4.4 GeV e beam
● HR (~2kcm) 20m epitaxial layer
● 128 columns of 320 pixels
● No SDS, thresholds dispersion ignored
● Pixel dimensions: 22x33m2 (11m2 diode)

● Pixel amp input Trans: L/W = 0.36/1 m 

FSBB-M0a (small diode): 120 GeV  beam
● HR (~1kcm) 18m epitaxial layer
● 2x208 columns of 416 pixels
● Discri. outputs processed with SDS
● Pixel dimensions: 22x33m2 (9m2 diode)

● Pixel amp. input Trans: L/W = 0.27/1.5 m 
● Noise increased by cross-coupling (mainly FPN)
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Beam-Test: Detection Performances vs Trigger RateBeam-Test: Detection Performances vs Trigger Rate

Data taken at different trigger rates: 2.5 (default value), 25 and 100 kHz

Measurements performed with high threshold settings: 8mV

2.5 kHz 25 kHz 100 kHz

# hits/cm2/frame = 0.75

Occupancy  0.12x10-4

# hits/cm2/frame = 2.70

Occupancy  0.45x10-4

# hits/cm2/frame = 11.64

Occupancy  1.95x10-4



Alejandro Pérez,    3rd JCL Meeting, Dec. 1th 2014 29

Beam-Test: Detection Performances vs Trigger RateBeam-Test: Detection Performances vs Trigger Rate

Data taken at different trigger rates: 2.5 (default value), 25 and 100 kHz

Measurements performed with high threshold settings: 8mV

No sensitivity to hit rate observed (deeper analysis under way)

9
m

2
 D

io
d

e

11
m

2
 D

io
d

e


det 

and residues


det 

and residues

Cluster 
multiplicity

Cluster 
multiplicity
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Beam-Test: Beam-Test: Detection Performances at High Incidence AngleDetection Performances at High Incidence Angle

Data taken with trigger rate of 2.5 kHz and 6mV threshold

9
m

2  D
io

d
e

11
m

2  D
io

d
e

Increase in 
det

 and multiplicity at high angles

Increase in U-residue mainly due to the increase in multiplicity in this direction

No change in V-residue as expected 


det 

and residues 
det 

and residues

Cluster 
multiplicity

Cluster 
multiplicity
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