

CMOS pixel sensors (CPS): Prospects for a VTX detector @ ILC.

Journées Collisionneur Linéaire, LPSC décembre 2014 Auguste Besson pour le groupe PICSEL (IPHC - Université de Strasbourg)

- Experimental conditions and performance goals
- CPS R&D roadmap for ILC-VTX

ILC Vertex detector :

Experimental conditions and performance goals

ILC-VTX: reminder on experimental conditions

- Beam structure
 - 5 trains/s of ~2600 bunches
 - 1 bunch every \sim 300 ns
 - « Quiet time » of ~ 200 ms
 - Consequences
 - Read-out, No trigger
 - Cooling: Power pulsing
- Beam background :
 - Beamstrahlung: RMS energy loss:
 - $\succ \delta_{BS} \sim 1\% @ \sqrt{s} = 250 \text{ GeV}$
 - Drives occupancy :
 - Read-out speed, Inner radius
 - > Physics cross section: $e^+e^- \rightarrow qqbar \sim 1 \text{ evt/s}$
 - ⇒ negligible
 - Drives radiation level
 - Moderate (compared to LHC)
 - Vertex detector 1st layer:
 - O(100) kRad/yr & O(10¹¹) $n_{eq}(1MeV)/cm^2/yr$
- Possible read-out strategies:
 - Integrate a few bunches
 - Read-out between trains with time stamping
 - Read-out between trains without time stamping (very high granularity)

- Typical value (first layer)
 - ➤ ~ 5 hits/cm²/BX
 - High systematics !
- Very sensitive to geometry and beam parameters
- Safety factor needed !
 - ➤ at least x 5 !

ILC vertex detector: squaring the circle

- Linear e+e- collider
 - Different approach compared to hybrid pixels & LHC
 - Experimental environment much less demanding (radiation tol. and speed)
- \Rightarrow favors technologies which allow to focus on resolution and material budget
- Vertex detector design and specifications
 - Physics performances

 $\sigma_b < 5 \oplus 10/p\beta \sin^{3/2}\theta \ \mu m.$

- > Spatial resolution: highly granular sensor: $\sigma_{R\phi} \sim 3 \ \mu m$ (pitch $\sim 17 \ \mu m$)
- > multiple scattering : very low material budget $O(0.15\%X_0/layer)$
- b/c/\u03c4 tagging with high efficiency/purity, low momentum tracking, secondary vertex charge determination

- Experimental environment constraints

- > Radiation hardness (ionising and non ion. rad.) \Rightarrow O(100 kRad) & O(1x10¹¹ n_{eq (1MeV)}) /year (layer 1)
- > Occupancy $\Leftrightarrow \Rightarrow$ Read-out speed $\Rightarrow 1^{st}$ layer: ~ 5 part/cm²/BX \Rightarrow few % occupancy max
- > Power dissipation \Leftrightarrow preferably air cooling \Rightarrow 600W/12W (Power cycling, ~3% duty cycle)
- EM compliance (pick-up noise)
- Read-out & electronics
 - Single Event Effect safety (Upset, latchup)
 - highly integrated read-out microcircuits
 - high data transfer rate (no trigger)
- Other parameters
 - > Costs, fabrication reliability and flexibility
 - > Mechanical integration: low mass, rigidity, heat conductive
 - Geometry: short or long barrel ?
 - > Alignment: micron level capabilities needed
- ⇒ reaching the specifications all together is the real challenge

Expected Vertex performances: pointing resolution

Compared pointing resolutions

• LC vertexing goal : $\sigma_{R\phi,Z} \leq 5 \oplus 10 - 15/p \cdot sin^{3/2} \theta \ \mu m$

 \triangleright LHC: $\sigma_{R\phi} \simeq 12 \oplus 70/p \cdot sin^{3/2} \theta$

_ ILC baseline

_ ILC mat.budget/layer $0.15\%X_0 \Rightarrow 1\%X_0$

ATLAS-IBL with ILC mat.budget

Journées Collisionneur Linéaire, Grenoble, Décembre 2014

ILD: Vertex detector

- Layout (DBD geometry):
 - Long Barrel approach
 - Radius: ~15 mm 60mm
 - 3 x double sided ladders
 - > Optimize material budget / alignment.
 - > Stand alone tracking improvment
 - Background tagging capabilities
 - > Other option: 5 single sided layers
 - Layers 1 / 2:
 - > Priority to read-out speed & spatial resolution
 - $\succ\,$ Small pixels: 17 x 17 / 34-102 μm^2
 - Binary charge encoding
 - $\succ\,$ Read-out time $\sim\,$ 50 / 25-5 μs
 - $\succ \sigma_{sp} \sim 3 / > \sim 5 \mu m$
 - layers 3 6
 - > Optimized for power consumption
 - > Large pixels (25/35 x 35 μ m²)
 - > 3-4 bits charge encoding
 - $\succ\,$ Read-out time \sim 60 μs
 - $\succ \sigma_{sp} \sim 4 \ \mu m$
- Occupancy @ $\sqrt{s} = 500 \text{ GeV}$
 - Taking into account cluster multiplicity
 - L1 ⇒ ~ 10⁻² / 50 μs
 - L2 ⇒ ~ 10⁻³ / 5 μs

	R (mm)	z (mm)	$ \cos \theta $	σ (μ m)	Readout time (μ s)
Layer 1	16	62.5	0.97	2.8	50
Layer 2	18	62.5	0.96	6	10
Layer 3	37	125	0.96	4	100
Layer 4	39	125	0.95	4	100
Layer 5	58	125	0.91	4	100
Layer 6	60	125	0.9	4	100

ILC Vertex detector :

• CPS R & D roadmap for ILC-VTX

CMOS Pixel Sensors roadmap

CMOS Pixel Sensors (CPS): A Long Term R&D

Initial objective: ILC, with staged performances

& CPS applied to other experiments with intermediate requirements

EUDET (R&D for ILC, EU project) STAR (Heavy lon physics) CBM (Heavy lon physics) ILC (Particle physics)

AIDA (generic R&D, EU project) FIRST (Hadron therapy)

ALICE/LHC (Heavy lon physics)

EIC (Hadron physics) CLIC (Particle physics) BESIII (Particle physics)

HadronPhysics2 (generic R&D, EU project)

EUDET 2006/2010

ILC >2020 International Linear Collider

- State of the art: (STAR and ALICE ITS)
- Pixel sensor development roadmap
 - Exploit fully the CPS potential
 - > Granular, thin, integrated FEE, industrial and cheap
 - R&D performed in synergy with other applications
 - > EUDET, STAR, ALICE, CBM, AIDA, etc.
 - Adress trade-off between resolution and speed
 - Adress double sided ladder development (alignment, mat.budget, power cycling, etc.)

STAR 2013 Solenoidal Tracker at RHIC

ALICE 2018 A Large Ion Collider Experiment

cf. A.Perez talk

CBM-MVD at FAIR/GSI

3 double-sided stations in vacuum at $T < 0^{\circ} C$

- $\sigma_{sp} \lesssim 5 \, \mu m$
- $\sim 0.5 \% X_0^{-}$ / station
- Radiation load $\gtrsim 10^{13} n_{eq}^{2}/cm^{2}$

Journées Collisionneur Linéaire, Grenoble, Décembre 2014

Auguste Besson

CBM >2018 Compressed Baryonic Matter

Validation of the concept : 0.35 µm technology

- Inner most layer: Mimosa-30 fabricated M30 $0.35 \ \mu m$ process with high resistivity epitaxy In pixels CDS, rolling shutter read-out, binary sparsified output Mimosa resolution vs pitch Column length \sim final sensor (\sim 5 mm) Mimosa 9 Analog (12bits) Mimosa 18 Analog (12bits) Mimosa 16 binary (1bit) Mimosa 22AHR binary (1bit) Mimosa 28AHR binary (1bit) Mimosa 9 binary (1bit, reprocessed) Mimosa 18 binary (1bit, reprocessed) Theoritical digital resolution (pitch /V **Resolution (microns** High resolution side (16 x 16 μ m²) > 128 col (discri) x 256 rows 10 Theoritical digital resolution (pitch /\/12) Mimosa 30AHR binary (1bit) > Read-out time $\sim \leq 50 \ \mu s$ > Beam test: $\sigma_{sp} \sim 3 \ \mu m$ Time stamping side (16 x 64 μ m²) ➤ 128 col (discri) x 64 rows \succ Lab tests: Noise ~ 15 e- and discris ok for \succ Read-out time ~ 10 µs Outer most layer: Mimosa31 fabricated 10 15 25 20 30 35 \succ 0.35 µm process pitch (microns) \succ 35 x 35 μ m² (power saving) \geq 48 col x 64 rows \succ Col. ended with 4 bits ADC M31
 - Read-out time ~ 10 μ s (1/10 of full scale)
 - \rightarrow 100 µs expected on full scale

Improving read-out speed

- State of the art (fab. process: 0.35 µm)
 - STAR: O(100 ns) / row ⇒ ~ 60/30 µs (17/33 µm pitch)
- Motivations for faster read-out
 - Robustness w.r.t. predicted beam background @ $\sqrt{s} = 0.5$ TeV
 - Standalone tracking (e.g. low momentum tracks)
 - Compatibility with high luminosity and $\sqrt{s} = 1$ TeV
- Strategies to accelerate read-out (ALICE-ITS upgrade: MISTRAL/ASTRAL/ALPIDE)
 - Read-out from both side \Rightarrow x2 (moderate additional mat. budget)
 - − Elongated pixels (17 μ m \Rightarrow 33 μ m or more) \Rightarrow x 2
 - Read-out simultaneously 2 or 4 rows \Rightarrow x2-4 (MISTRAL)
 - Subdivide arrays in 4 sub-arrays read-out in // ⇒x4
 - Achievable in 0.18 µm process (6-7 Metal layers)
 - In pixel discriminators ⇒ ASTRAL
 - − Different read-out strategy: Asynchronous ⇒ ALPIDE
- Expected VTX performances
 - @ 1 TeV /0.5 TeV

Layer	σ_{sp}	t_{int}	Occupancy [%]	Power
	MIMOSA/AROM	MIMOSA/AROM	1 TeV (0.5 TeV)	inst./average
VXD-1	3 / 5-6 μm	50 / 2 μs (8 μs)	4.5(0.9) / 0.5(0.1)	250/5 W
VXD-2	4 / 10 μm	100 / 7 μs (100 μs)	1.5(0.3) / 0.2(0.04)	120/2.4 W
VXD-3	4 / 10 μm	100 / 7 μs (100 μs)	0.3(0.06) / 0.05(0.01)	200/4 W

Journées Collisionneur Linéaire, Grenoble, Décembre 2014

cf. A.Perez talk

in an	
and a state of the	
A the second s	
	0
	0
	0
	0
Sparafication + Output baffer	
Spanification + Output Datler	
EVD Ring	

Sensor integration in Ultra Light Devices

- Double sided ladders expected benefits
 - Alignment & tracking (pointing)
 - Beam background rejection ?
 - Material budget, 1 mechanical support
 - Redundancy (efficiency)
 - Each layer optimized
 - read-out speed vs resolution
- PLUME coll. (Bristol, DESY, IPHC)
- Plume 01 prototype (<2012)
 - Fabricated
 - 2 x 6 Mimosa 26 chips
 - > 2 mm low density SiC foam
 - Validated in test beam (2011)
 - Operated with air cooling
 - ➢ 0.6 % X₀
- Plume 02 prototype
 - Under construction (spring 2015)
 - Reduced mat. Budget
 - ▶ Reduced width (24.5 mm \Rightarrow 18mm)
 - Lighter (alu) flex cable, mechanical support
 - \succ 0.6 % X₀ $\Rightarrow \sim$ 0.35 % X₀ (cross-section)

Journées Collisionneur Linéaire, Grenoble, Décembre 2014

2000

1000

0.01591 + 0.02006 4.075 ±0.014

0.05053 ± 0.01955

20

3.971 ±0.014

41612 4148 ± 25.2

back side

Signa

Entries

10

15

Vertexing, tracking, background and alignment studies

Auguste Besson

Incident angle reconstruction (AMS 0.35 µm, High resistivity, preliminary)

Minimal θ angle where standard deviation on theta_gen ~< 10° (the systematic bias is small ~< 5%)

	Ερί ~ 10 μm	Ερί ~ 20 μm	Epi ~ 30 μm	
\rightarrow θ Reconstruction (deg)	~ 80°	~ 70°	~ 65°	
	~ 70°	~ 57°	~45°	
Minimal θ angle where standard deviation on (ϕ rec – ϕ gen) / (ϕ gen) ~< 5°				

Journées Collisionneur Linéaire, Grenoble, Décembre 2014

Summary and plans

- R & D in CPS: Well established architecture achieved
 - Successfully equipped STAR-PXL (0.35 µm process, ~ 360 Mpixels)
 - Extendable to ILC-VTX
- 0.18 μ m fab. process benefits \Rightarrow should allow to go further
 - > Standalone tracking, bunch tagging, High E/Lumi running, etc.
 - 6 Metal. Layers ⇒ higher µcircuits density, Deep P-well ⇒ PMOS & NMOS in pixels transistors
 - Access to high resistivity (few $k\Omega$.cm), Access to sizeable epitaxy thickness.
 - Full Scale Building Block (FSBB) validated in test beam (A.Perez talk)
- 2 sided ladders: PLUME collab.
 - Concept validated \Rightarrow On the way to achieve 0.35% X_0
 - Next:
 - > 2 complementary sides
 - > Validate power pulsing in mag. Field
 - > Investigate possibilities to reach < 0.3 % X_0
- Beyond 2014 in 0.18 μm fab. process
 - Final ALICE-ITS sensor and CBM-MVD variant in 2015
 - − Develop fast read-out in pixel fast shaping & discri. \Rightarrow O(1 µs) \Rightarrow bunch tagging
 - Validate 3-bit charge encoding ADC concept (outer layers)
 - Investigate Fine pixels (delayed read-out)
 - Fabricate dedicated ILC sensors in 0.18 µm process -> ~2018

)	Layer	σ_{sp}	t_{int}	
	ILD-VXD/In	$<$ 3/5 μm	50/8 μs	
	ILD-VXD/Out	\sim 3.5/4 μm	60/100 μs	

Back up

CMOS pixel sensor (CPS) for charged particle detection

- Monolithic, p-type Si
 - \succ Signal created in low doped thin epitaxial layer ~10-20 μ m
 - > ~ 80 e- / μ m \Rightarrow total signal ~ O(1000 e-)
- Thermal diffusion of e-
 - Limited depleted region
 - Interface highly P-doped region: reflection on boundaries
- Charge collection: N-Well diodes
 - > Charge sharing \Rightarrow resolution
- Continuous charge collection
 - No dead time
- Main Avantages
 - Granularity
 - > Pixel pitch down to 10 x 10 μ m² \Rightarrow spatial resolution down to ~ 1 μ m)
 - Material budget
 - > Sensing part ~ 10-20 μm \Rightarrow whole sensor routinely thinned down to 50 μm
 - Signal processing integrated in the sensor
 - Compacity, flexibility, data flux
 - Flexible running conditions
 - ➢ From ≤ 0°C up to 30-40°C if necessary
 - ➤ Low power dissipation (~ 150-250 mW/cm²) ⇒ material budget
 - > Radiation tolerance: >~100s kRad and O(10¹² n_{eq}) ⇒f(T,pitch)
 - Industrial mass production
 - > Advantages on costs, yields, fast evolution of the technology, Possible frequent submissions
- Main limitations
 - Industry adresses applications far from HEP experiments concerns
 - Different optimisations on the parameters on the technologies
 - Recently: new accessible processes:
 - > Smaller feature size, adapted epitaxial layer
 - > Open the door for new applications

Beam background in various detectors (ILD example)

- (A.Vogel, DBD, De Masi, etc.)
- 100 BX simulated
 - Pair induced background
 - Depends on \sqrt{s}
 - 20 % due to back scatterers
 - Statistical error only
 - ➤ systematics much higher

Subdetector	Units	Layer	Nom-500	Low-P-500	Nom-1000
VTX-DL	$\rm hits/cm^2/BX$	1	$3.214{\pm}0.601$	7.065 ± 0.818	7.124 ± 1.162
•		2	1.988 ± 0.464	4.314 ± 0.604	4.516 ± 0.780
		3	$0.144{\pm}0.080$	$0.332 {\pm} 0.107$	$0.340{\pm}0.152$
		4	$0.118{\pm}0.074$	$0.255 {\pm} 0.095$	$0.248 {\pm} 0.101$
		5	$0.027{\pm}0.026$	$0.055 {\pm} 0.037$	$0.046 {\pm} 0.036$
		6	$0.024{\pm}0.022$	$0.046 {\pm} 0.030$	$0.049 {\pm} 0.044$
SIT	$hits/cm^2/BX$	1	$0.017 {\pm} 0.001$	$0.031 {\pm} 0.007$	$0.032{\pm}0.012$
		2	$0.004{\pm}0.003$	$0.016 {\pm} 0.005$	$0.008 {\pm} 0.002$
FTD	hits/cm ² /BX	1	$0.013 {\pm} 0.005$	$0.031 {\pm} 0.007$	$0.019 {\pm} 0.006$
		2	$0.008 {\pm} 0.003$	0.023 ± 0.007	$0.013 {\pm} 0.005$
		3	$0.002{\pm}0.001$	0.005 ± 0.002	$0.003 {\pm} 0.001$
		4	$0.002{\pm}0.001$	$0.007 {\pm} 0.002$	$0.004{\pm}0.001$
		5	$0.001{\pm}0.001$	0.006 ± 0.002	$0.002{\pm}0.001$
		6	$0.001{\pm}0.001$	0.005 ± 0.002	$0.002{\pm}0.001$
		7	$0.001{\pm}0.001$	0.007 ± 0.002	$0.001 {\pm} 0.001$
SET	hits/BX	1	5.642 ± 2.480	57.507 ± 10.686	13.022 ± 7.338
		2	$5.978 {\pm} 2.360$	59.775 ± 8.479	13.711 ± 7.606
TPC	hits/BX	-	408 ± 292	3621 ± 709	803 ± 356
ECAL	hits/BX	-	155 ± 50	1176 ± 105	274 ± 76
HCAL	hits/BX	-	8419 ± 649	24222 ± 744	$19905 {\pm} 650$

- typical value (first layer)
 ➤ ~ 5 hits/cm²/BX
- Very sensitive to geometry and beam parameters
- Safety factor needed !
 - ➤ at least x 5 !

Next Forthcoming device: CBM Micro-Vertex Detector (MVD)

Next Challenge : ALICE-ITS Upgrade

Upgrade of ITS entirely based on CMOS Pixel Sensors (CPS) :

- Present geometry: 6 layers HPS x 2 / Si-drift x 2 / Si-strips x 2
 Future geometry : 7 layers → → → → all with CPS (~ 25-30 · 10³ chips)
 ⇒ 1st large tracker (10 m²) using CPS
 ITS-TDR approved March 2014 : Pub. in J.Phys. G41 (2014) 087002
- Requirements for ITS inner and outer barrels compared to specifications of STAR-PXL chip :

	σ_{sp}	t _{r.o.}	Dose	Fluency	Top	Power	Active area
STAR-PXL	$<$ 4 μm	$<$ 200 μs	150 kRad	$3\cdot10^{12} \text{ n}_{eq}/\text{cm}^2$	30-35°C	160 mW/cm^2	0.15 m ²
ITS-in	\lesssim 5 μm	\lesssim 30 μs	700 kRad	$1 \cdot 10^{13} \operatorname{n}_{eq}/\mathrm{cm}^2$	30°C	$<$ 300 mW/cm 2	0.17 m^2
ITS-out	\lesssim 10 μm	\lesssim 30 μs	15 kRad	$4{\cdot}10^{11}~{ m n}_{eq}/{ m cm}^2$	30°C	$<$ 100 mW/cm 2	\sim 10 m 2

\Rightarrow 0.35 μm CMOS process (STAR-PXL) not suited to read-out speed & radiation tolerance

18

Next Progress Carrier : ALICE-ITS Upgrade

• Vx Det. (3 layers) + Tracker (4 layers, 10 m²) : 5 μm , 20-30 μs , 700 kRad & 10¹³ n_{eq}/cm² at 30°C

- 2 alternative sensors developped :
 - * Baseline : ASTRAL (in-pixel discri.)
 - $\hookrightarrow \gtrsim 15 \,\mu s$, 85 mW/cm²
 - * Back-up : **MISTRAL** (end-of-col. discri.) $\hookrightarrow \gtrsim 30 \ \mu s, < 200 \ \text{mW/cm}^2$
- All main components validated in 2013 :
 - * sensing node properties
 - * in-pixel ampli+CDS
 - in-pixel discriminators
 - * rolling-shutter with end-of-col. discri.
 - * simultaneous 2-row read-out
 - * sparse data scan
 - programmable chip steering (JTAG)
 - → outcome integrated in ITS-TDR

11

Upcoming Sensors (Partly) Based on the ALICE Development

- Spin-off of MISTRAL :
 - $_\circ\,$ best suited to reach \lesssim 2.8 μm resolution in L1
 - $_\circ\,$ BUT pixels of 17 $\mu m imes$ 17 $\mu m \Rrightarrow\, \sim$ 50 μs r.o. time
- Spin-offs of ASTRAL :
 - $_\circ\,$ L2 : pixels of 17 $\mu m imes$ 102 $\mu m \Rrightarrow \, \sim$ 7 $\mu m \oplus$ 2.5 μs
 - L1 & L2 : pixels of 22 $\mu m \times$ 33 $\mu m \Rightarrow$ 5 $\mu m \oplus$ 8 μs \hookrightarrow mini-vectors ≡ 3.5 $\mu m \oplus$ 4-8 μs
 - $_\circ$ L3-L6 : pixels of \lesssim 22 $\mu m imes$ 33 μm \Rightarrow 4-5 $\mu m \oplus$ 8 μs
- Spin-offs of ALPIDE :
 - $_\circ\,$ L2 : pixels of 25 $\mu m imes$ 25 $\mu m \Rrightarrow\,$ 5 $\mu m \oplus <$ 5 μs
 - L2 : pixels of 15 μm × 125 μm ⇒ 8 μm ⊕ < 1 μs reachable ?
- Spin-offs of MIMOSA-31, MISTRAL & MIMADC :
 - $_\circ\,$ L3-L6 : pixels of 35 $\mu m imes$ 35 $\mu m \Rrightarrow\,$ 4 $\mu m \oplus$ 30-60 μs
 - $_{\circ}$ L1-L2 : pixels of 25 μm × 25 μm ⇒ 3 μm ⊕ 20 μs or 25 μm × 35 μm ⇒ 3.5 μm ⊕ 15 μs ???
- MIMOSA-33 : Fine Pixels of 4 $\mu m \times$ 4 μm with delayed (analogue) read-out

Journées Collisionneur Linéaire, Grenoble, Décembre 2014

MISTRAL & ASTRAL : Schematics & Layouts

MISTRAL : rolling shutter with 2-row read-out & end-of column discriminators

■ ASTRAL : rolling shutter with 2-row read-out (≡ MISTRAL) & in-pixel discriminators

Ist Full Scale Building Blocks (FSBB) fab. in Spring '14 → FSBB-M0 tests ± completed

Journées Collisionneur Linéaire, Grenoble, Décembre 2014

CPS for ITS Tracker : FSBB-M0a/b Overview

- Main characteristics :
 - $_{*}\,$ pixels of 22imes33 μm^{2} including pre-amp. & CDS (clamping) using 6 ML
 - * staggered sensing nodes
 - * double-row rolling shutter read-out (\equiv MIMOSA-22THRb)
 - * 416 columns of 416 rows
 - * 13.7×9.2 mm² active area
 - \hookrightarrow becomes 13imes10 mm 2 with 31imes24 μm^2 pixels
 - * 3 stages zero-suppression (\equiv SUZE-02)
 - \hookrightarrow windows of 4 \times 5 pixels encoded on 32 bits
 - # 4 output buffers of 512 × 32 bits each
 - * 2 output nodes at 320 Mbits/s (160 MHz clock)
 - * integrated JTAG, regulators, VDD, GND, ...
 - * t $_{r.o.}$ \simeq 35–40 μs (tbc)

* 2 slightly different sub-arrays in each sensor : optimisation of sensing node geometry & in-pixel circuitry

- Design not final, e.g. in terms of :
 - * pixel dimensions * power consumption
 - * peripheral circuitry area * pad implementation

*	SUZE-02	throughput vs	power
---	---------	---------------	-------

* trigger implementation (if any)

Journées Collisionneur Liné	ire, Grenoble, Décembre 2014
-----------------------------	------------------------------

Sensor integration in Ultra Light Devices

Journees collisionneur Lineaires, Grenoble, Decembre 2014

Expected Vertex performances : Flavor tagging

- ILD example
- Full simulation
- Multi-variable tagging algorithm (BDT)
 - LCFIplus
- Continuous improvements

Expected Vertex performances : I.P. resolution

Tracking system: material budget

Radiation length vs polar angle

Goal: 0.1 X₀ for the complete tracker

Expected Tracking performances

Single muons events : Normalised pT resolution for different polar angles

see Vertexing software and methods for the ILC talk by G.Voutsinas

Journees collisionneur Lineaires, Grenoble, Decembre 2014

Tracking with mini vectors at ILD (Voutsinas)

Cellular Automaton - first pass

- First pass of cellular automaton
 - Every cell starts with state 0
 - Connect only cells having the same state
 - If a cell is connected with another, its state is raised by 1 (red segments)

Connection filtered out by MV ϕ angle crit.

Cellular Automaton - collect tracks

- Second pass of cellular automaton
 - State 2
 - State 1
 - State 0
- CA continues up to the point no other changes occur in cell's states
- · Consider segments where

state = layer number

as good

• Form track candidates

Cellular Automaton – second pass

- Second pass of cellular automaton
 - State 2
 - State 1
 - State 0
- CA continues up to the point no other changes occur in cell's states
- Consider segments where

state = layer number

as good

- Exploits the double sided ladder structure of VXD
- Up to now, has been applied in various CMOS VXD configurations (see table)
- Mini vector formation
 - 1) Hits in adjacent layers (dist 2mm) with max distance 5mm
 - 2) Or $\delta\theta$ between hits in adjacent layers (cut can go up to 0.1°)
- Divide VXD into θ, φ sectors
 - Try to connect mini vectors in neighbouring sectors using a cellular automaton algorithm
- Cellular automaton is already there for the FTD tracking
- Very flexible
 - Appealing to be used for pattern recognition in other detectors
 - > See R. Glattauer Diploma thesis

LAT final plane

LAT motivations

Big surface and thin reference planes

Assembly

- Stretched 50 μ m Mylar foil (X^{Mylar} ~ 3 × X^{Si}₀)
- Layout: 2 staggered sensors on each side
- UV cured gluing
- Sensor bonding

Basic numbers

- 3.6 M-pixels over 15.3 cm²
- $\leq 200 \mu s$ integration time
- Insensitive areas ~100μm

Production

- 2 SALAT planes fully operational (Mod-3 and 4)
- One crack on sensor of Mod-3 during gluing
- · Even if sensor still operational decided to switch it off

Read out orientation

Beam background

• θT angle (no boost taken into account) vs pT

Crucial parameter: pitch / epitaxial layer thickness

32

Jo

Beam background distribution (R. De Masi et al.)

