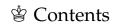

The Inner Workings of Checkmate



M. Drees, H. K. Dreiner, J. S. Kim, D. Schmeier, J. Tattersall

Checks Models At Terascale Energies

User Mode (Program Flow)

Data Input

🖞 🛮 Data Procession

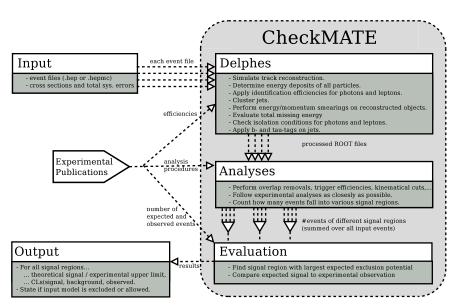
Data Output

Dev Mode (Program Code)

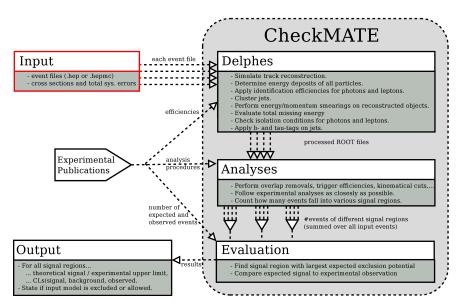
General Structure 🖄

Analysis Setup 🖺

Analysis Coding &



豐 Part A: User Mode 빨



[Mandatory Parameters]

Name: My_New_Run

Analyses: atlas_conf_2013_047

[gluinogluino]

XSect: 3.53*FB

XSectErr: 1e-5*PB

Events: testfile.hep

Required

- Name
- At least one analysis
- At least one [process] with at least one item in Events (.hep or .hepmc), one total cross section and a total estimate on the systematic error

† Input: Extended Cases

[Mandatory Parameters]

Name: My_New_Extended_Run

Analyses: atlas_conf_2013_035,

atlas_conf_2013_049, atlas_conf_2013_047,

atlas_conf_2013_089

[gluinogluino]

XSect: 3.53*FB

XSectErr: 1e-5*PB

Events: gg.hep

Optional

■ More analyses (Delphes still runs only once but then the analyses are processed one by one)

[Mandatory Parameters]

Name: My_New_Extended_Run

Analyses: atlas_conf_2013_047

[gluinogluino]

XSect: 3.53*FB

XSectErr: 1e-5*PB

Events: gg.hep, gg2.hepmc

Optional

■ Many event files for one process (are processed one by one, normalised *in total* to the given cross section)

 $[\ldots]$

[gluinogluino]
XSect: 3.53*FB

XSectErr: 1e-5*PB

Events: gg.hep

[squarksquark]

XSect: 4.64*FB

Events: ss.hep

XSectErr: 2e-5*PB

Optional

■ Events for different processes with individual cross sections and errors (are processed one by one, normalised events *independently added* in the end)

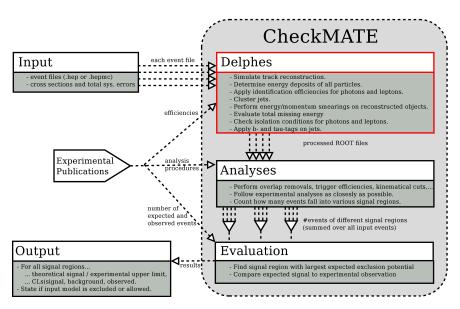
[...]

[Optional Parameters] SkipEvaluation: True

FullCLs: True

OutputExists: Add

[...]


Many extra options / arguments, most importantly

- Skip parts in CheckMATE (for debugging)
- Calculate full CLs for each SR (See later)
- Add events to an already processed CheckMATE run (either add statistics to a known process or add events from a new process)
- **...**

Step 1: Delphes

Detector Simulation

Delphes 3.0.10 Standard

- A Simulates track reconstruction
- Determines energy deposits of all particles
- Applies identification efficiencies for photons and leptons
- Clusters jets
- A Performs energy/momentum smearings of all reconstructed objects
- Evaluates total missing energy
- Checks isolation conditions for photons and leptons
- ∆ Applies b-/ tau-tag on jets

Extra Features / Improvements

 $\triangle \rightarrow$ Wait for Jamie's Talk Daniel Schmeier - The Inner Workings of Checkmate

Delphes within CheckMATE

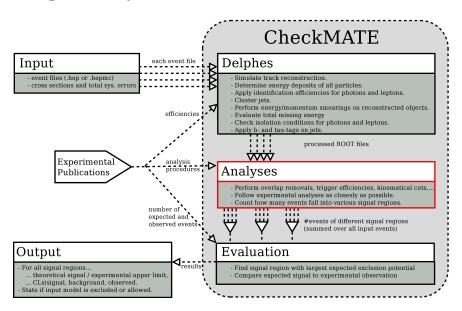
Input and Setup

- The user has declared, which analyses should be considered
- Every analysis comes with a list of required objects:
 - Efficiency and isolation for electrons, muons and photons
 - Parameters for jet algorithm $(p_{\min}^T, \Delta R)$
 - If/Which τ IDs are used
 - If/Which b IDs are used
- CheckMATE will automatically find and merge all analyses' settings, load the required Delphes modules and runs on each input event file once, regardless of the number of analyses

Delphes within CheckMATE

Input and Setup

- The user has declared, which analyses should be considered
- Every analysis comes with a list of required objects:
 - Efficiency and isolation for electrons, muons and photons
 - Parameters for jet algorithm $(p_{\min}^T, \Delta R)$
 - If/Which τ IDs are used
 - If/Which b IDs are used
- A CheckMATE will automatically find and merge all analyses' settings, load the required Delphes modules and runs on each input event file *once*, regardless of the number of analyses


Output

- Delphes produces a ROOT output file for each input event file
- A These are automatically processed by further CheckMATE units, but can be examined by user if desired

Step 2: Analyses

A CheckMATE analysis does the following

- A Choose the objects of interest (leptons, jets,...)
- A Filter objects (efficiency and isolation flags, kinematical cuts, overlap removals, ...)
- A Check event vetoes (Too many/few objects, trigger efficiencies, ...)
- ∆ Check various signal region criteria (total #_T, # and energy of objects, ...)
- A Count number of input events that fall into each signal region

A CheckMATE analysis does the following

- A Choose the objects of interest (leptons, jets,...)
- & Filter objects (efficiency and isolation flags, kinematical cuts, overlap removals, ...)
- A Check event vetoes (Too many/few objects, trigger efficiencies, ...)
- ∆ Check various signal region criteria (total \(\mu_T\), # and energy of objects, ...)
- △ Count number of input events that fall into each signal region

Output

- A For each input file, store general information and
- \triangle for each SR, store Σ (weights) and Σ (weights²) for the input events that passed the respective signal region cuts

Example Output


```
# ATT.AS
```

ATLAS-CONF-2013-047

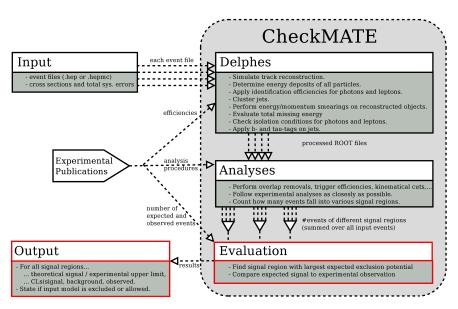
0 leptons, 2-6 jets, etmiss

sqrt(s) = 8 TeV

 $# int(L) = 20.3 fb^-1$

Inputfile: /hdd/results/cMSSM/delphes/000 delphes.root

XSect: 4.35 fb Error: 1.22086 fb


MCEvents: 5000 SumOfWeights: 5000 SumOfWeights2: 5000 NormEvents: 87.9518

Sum W2 N Norm SR. Sum W Acc AL 1315 1315 0.263 23.1313 1.24892 ΑM 71 71 0.0142 BM98 98 0.0196 1.72385 вт 2 2 0.0004 0.0351807 CM 505 505 0.101 8.88313 CT 9 9 0.0018 0.158313 D 184 184 0.0368 3.23663 613 613 0.1226 10.7829 EL ΕM 398 398 0.0796 7.00096

Step 3: Evaluation

Combine within each process p with given σ^p , $\Delta \sigma^p$

- Determine Σ weights over all input files for p
- Normalise w.r.t $\mathcal{L}\sigma^p$ for S^p
- Determine normalised $\sqrt{\sum}$ weights² for ΔS_{stat}^p
 - Use $\mathcal{L}\Delta\sigma^p$ for ΔS_{sys}^p

Combine within each process p with given σ^p , $\Delta \sigma^p$

- Determine \sum weights over all input files for p
- Normalise w.r.t $\mathcal{L}\sigma^p$ for S^p
- Determine normalised $\sqrt{\sum}$ weights² for ΔS_{stat}^p
- \triangle Use $\mathcal{L}\Delta\sigma^p$ for ΔS_{sys}^p

Combine different processes

- \triangle Use $S = \sum_{p} S^{p}$
- $\triangle \operatorname{Use} \Delta S_{\operatorname{stat/sys}} = \sqrt{\sum_{p} (\Delta S_{\operatorname{stat/sys}}^{p})^{2}}$

Combine within each process *p* with given σ^p , $\Delta \sigma^p$

- \triangle Determine \sum weights over all input files for p
- \triangle Normalise w.r.t $\mathcal{L}\sigma^p$ for S^p
- \triangle Determine normalised $\sqrt{\sum \text{weights}^2}$ for ΔS_{stat}^p
- \triangle Use $\mathcal{L}\Delta\sigma^p$ for $\Delta S_{\mathrm{sys}}^p$

Combine different processes

- $\triangle \text{ Use } \Delta S_{\text{stat/sys}} = \sqrt{\sum_{p} (\Delta S_{\text{stat/sys}}^{p})^{2}}$
- \triangle Use $\Delta S = \sqrt{\Delta S_{\mathrm{stat}}^2 + \Delta S_{\mathrm{sys}}^2}$

Output

å A table with, for each signal region, a list of all the above numbers

Example Output

Prefix N_TotMC AL

Process: gluino pair

sys

stat

BT

stat

BM

1100000	. graino_p	ull										
000	10000.00	31.99	0.60	3.94	3.94	0.21	0.49	5.33	0.24	0.66	0.39	0.07
001	10000.00	32.84	0.61	4.04	4.04	0.21	0.50	5.49	0.25	0.68	0.41	0.07
Tot	20000.00	32.41	0.43	3.99	3.99	0.15	0.49	5.41	0.17	0.67	0.40	0.05
Process	gluino_s	quark										
002	10000.00	4.99	0.10	0.93	1.34	0.05	0.25	1.92	0.06	0.36	0.47	0.03
003	10000.00	5.00	0.10	0.93	1.43	0.05	0.27	1.92	0.06	0.36	0.42	0.03
Tot	20000.00	4.99	0.07	0.93	1.38	0.04	0.26	1.92	0.04	0.36	0.44	0.02
Tot	40000.00	37.41	0.43	4.10	5.37	0.15	0.56	7.33	0.18	0.76	0.84	0.05

ΑM

stat

sys

stat

sys

Input and Setup

- \triangle We have number of expected signal $S \pm \Delta S$ in each signal region
- ∆ CheckMATE has a reference card with experimental results:
 - observed events O
 - expected background plus uncertainty $B \pm \Delta B$
 - (in most cases) translated 95% upper limit on signal S_{max}^{95}

User can choose

- \triangle Directly compare S to S_{max}^{95}
- \triangle If $r^c = \frac{S 2\Delta S}{S_{max}^{95}} > 1$: Excluded!
- A Quick and easy for limit setting

- \triangle Evaluate $CL_s(O, B, \Delta B, S, \Delta S)$
- \triangle If $CL_s < 0.05$: Excluded!
- Slower, but limits can be set to different confidence levels

🗳 Evaluation

Input and Setup

- \triangle We have number of expected signal $S \pm \Delta S$ in each signal region
- A Checkmate has a reference card with experimental results:
 - observed events O
 - expected background plus uncertainty $B \pm \Delta B$
 - (in most cases) translated 95% upper limit on signal $S_{\rm max}^{95}$

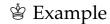
User can choose

å Directly compare S to S_{max}^{95} å If $r^c = \frac{S - 2\Delta S}{S_{95}^{95}} > 1$: Excluded!

Quick and easy for limit setting

Daniel Schmeier — The Inner Workings of Checkmate

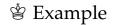
 \triangle Evaluate $CL_s(O, B, \Delta B, S, \Delta S)$


 \triangle If $CL_s < 0.05$: Excluded!

Slower, but limits can be set to different confidence levels

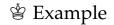
Result

 \triangle Choose signal region with strongest *expected* exclusion (O = B)


å Use its *observed* result to state final "excluded" or "allowed"

ATLAS Reference

Signal Region	A-loose	A-medium	B-medium	B-tight
Total bkg	4700 ± 500	122 ± 18	33 ± 7	2.4 ± 1.4
Observed	5333	135	29	4
S obs S exp	1341.2 1135.0 ^{+332.7} _{-291.5}	51.3 42.7 ^{+15.5} _{-11.4}	14.9 17.0 ^{+6.6} _{-4.6}	6.7 5.8 ^{+2.9} _{-1.8}



ATLAS Reference

Signal Region	A-loose	A-medium	B-medium	B-tight	
Total bkg	4700 ± 500	122 ± 18	33 ± 7	2.4 ± 1.4	
Observed	5333	135	29	4	
S obs S exp	1341.2 1135.0 ^{+332.7} -291.5	51.3 42.7 ^{+15.5} _{-11.4}	14.9 17.0 ^{+6.6} _{-4.6}	6.7 5.8 ^{+2.9} _{-1.8}	

atlas_conf_2013_047_r_limits

SR	S	dS_stat	dS_sys	dS_tot	S95_obs	S95_exp	r^c_obs	r^c_exp
AL	37.36	0.61	4.10	4.15	1341.20	1135.00	0.02	0.03
AM	5.34	0.22	0.55	0.59	51.30	42.70	0.08	0.10
BM	7.41	0.25	0.77	0.81	14.90	17.00	0.39	0.34
BT	0.86	0.07	0.10	0.12	6.70	5.80	0.09	0.11
CM	17.82	0.43	1.99	2.04	81.20	72.90	0.17	0.19
CT	2.40	0.12	0.28	0.31	2.40	3.30	0.75	0.54
D	12.14	0.34	1.29	1.33	15.50	13.60	0.61	0.70
EL	21.26	0.46	2.35	2.39	92.40	57.30	0.18	0.29
EM	16.14	0.40	1.79	1.83	28.60	21.40	0.44	0.59
ET	7.95	0.28	0.87	0.91	8.30	6.50	0.74	0.95

SR S

ATLAS Reference

Signal Region	A-loose	A-medium	B-medium	B-tight
Total bkg	4700 ± 500	122 ± 18	33 ± 7	2.4 ± 1.4
Observed	5333	135	29	4
S obs C 95	1341.2	51.3	14.9	6.7
$S_{\rm exp}^{95}$	$1135.0^{+332.7}_{-291.5}$	$42.7^{+15.5}_{-11.4}$	$17.0^{+6.6}_{-4.6}$	$5.8^{+2.9}_{-1.8}$

Result

Result: Allowed

Result for r: $r_max = 0.74$ SR: $atlas_conf_2013_047 - ET$

atlas_conf_2013_047_r_limits

dS stat

AL	37.36	0.61	4.10	4.15	1341.20	1135.00	0.02	0.03
AM	5.34	0.22	0.55	0.59	51.30	42.70	0.08	0.10
BM	7.41	0.25	0.77	0.81	14.90	17.00	0.39	0.34
BT	0.86	0.07	0.10	0.12	6.70	5.80	0.09	0.11
CM	17.82	0.43	1.99	2.04	81.20	72.90	0.17	0.19
CT	2.40	0.12	0.28	0.31	2.40	3.30	0.75	0.54
D	12.14	0.34	1.29	1.33	15.50	13.60	0.61	0.70
EL	21.26	0.46	2.35	2.39	92.40	57.30	0.18	0.29
EM	16.14	0.40	1.79	1.83	28.60	21.40	0.44	0.59
ET	7.95	0.28	0.87	0.91	8.30	6.50	0.74	0.95

dS_sys dS_tot S95_obs S95_exp r^c_obs r^c_exp

How does the code work?

What is needed to understand all of the code?

- & General Input/Output routines are written in Python 2.7
- Delphes is written in C++ using ROOT libraries
- Analysis code is written in C++ using ROOT libraries (see later)
- Evaluation is done in Python (linking to PyROOT/RooStat for CLs)
- Compilation scripts are created using Autotools
- Experimental data is stored in Python and human readable textfiles

How does the code work?

What is needed to understand all of the code?

- & General Input/Output routines are written in Python 2.7
- Delphes is written in C++ using ROOT libraries
- Analysis code is written in C++ using ROOT libraries (see later)
 - Evaluation is done in Python (linking to PyROOT/RooStat for CLs)
- Compilation scripts are created using Autotools
- Experimental data is stored in Python and human readable textfiles

What is needed to add analyses?

A How does the code work?

What is needed to understand all of the code?

- & General Input/Output routines are written in Python 2.7
- Delphes is written in C++ using ROOT libraries
- Analysis code is written in C++ using ROOT libraries (see later)
 - Evaluation is done in Python (linking to PyROOT/RooStat for CLs)
- Compilation scripts are created using Autotools
- Experimental data is stored in Python and human readable textfiles

What is needed to add analyses?

- Ability to answer questions
- Some understanding of C++

The Analysis Manager

Running the Analysis Manager

What do you want?

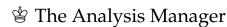
- -(1)ist all analyses,
- -(a)dd a new analysis to CheckMATE,
- -(r)emove an analysis from CheckMATE]

The Analysis Manager


```
##Name
                         Description
                                                                        Lumi
                                                                             CR?
# atlas_1210_2979
                     1
                          ATLAS, WW measurement with 2 leptons (7TeV)
                                                                         4.6
                                                                              no
# atlas_1308_2631
                          ATLAS, 0 leptons + 2 b-jets + etmiss
                                                                         20.1
                                                                              yes #
# atlas_1402_7029
                          ATLAS, 3 leptons + etmiss (chargino+neutralino)
                                                                         20.3
                                                                              no
# atlas_1403_4853
                          ATLAS, 2 leptons + etmiss (direct stop)
                                                                         20.3
                                                                              no
# atlas_1403_5294
                          ATLAS, 2 leptons + etmiss, (SUSY electroweak)
                                                                         20.3
                                                                              yes #
# atlas 1404 2500
                          ATLAS, Same sign dilepton or 31
                                                                         20.3
                     5
                                                                              no
# atlas 1407 0583
                          ATLAS, 1 lepton + (b-) jets + etmiss (stop)
                                                                         20.3
                                                                              no
# atlas_1407_0600
                          ATLAS, 3 b-jets + 0-1 lepton + etmiss
                                                                         20.1
                                                                              nο
# atlas 1407 0608
                          ATLAS, Monojet or charm jet (stop)
                                                                         20.3
                                                                              no
# atlas_conf_2012_104
                          ATLAS, 1 lepton + >= 4 jets + etmiss
                                                                          5.8
                                                                              yes #
# atlas_conf_2012_147
                          ATLAS, Monojet + etmiss
                                                                         10.0
                                                                              yes #
# atlas_conf_2013_021
                          ATLAS, WZ standard model (3 leptons + etmiss)
                                                                         13.0
                                                                              no
# atlas conf 2013 024
                          ATLAS, 0 leptons + 6 (2 b-) jets + etmiss
                                                                         20.5
                                                                              yes #
# atlas_conf_2013_031
                          ATLAS: Higgs spin measurement (WW)
                                                                         20.7
                                                                              no
# atlas_conf_2013_036
                          ATLAS: 4 leptons + etmiss
                                                                         20.7
                                                                              no
# atlas conf 2013 037
                          ATLAS, 1 lepton + (b-) jets + etmiss (stop)
                                                                         20.7
                                                                              no
                          ATLAS, 0 leptons + 2-6 jets + etmiss
                                                                         20.3
# atlas_conf_2013_047
                                                                              ves #
# atlas_conf_2013_049
                          ATLAS, 2 leptons + etmiss
                                                                         20.3
                                                                              yes #
# atlas_conf_2013_061
                          ATLAS, 0-1 leptons + >= 3 b-jets + etmiss
                                                                         20.1
                                                                              ves #
# atlas conf 2013 062
                          ATLAS: 1-2 leptons + 3-6 jets + etmiss
                                                                         20.1
                                                                              yes #
# atlas_conf_2013_089
                          ATLAS, 2 leptons (razor)
                                                                         20.3
                                                                              yes #
# atlas conf 2014 014
                          ATLAS, 2 leptons + b-jets (stop)
                                                                         20.3
                                                                              ves #
# atlas conf 2014 033
                          ATLAS, WW standard model measurement
                                                                         20.3
                                                                              yes #
# cms_1303_2985
                          CMS, alpha_T + b-jets
                                                                         11.7
                                                                              yes #
# cms_1301_4698_WW
                          CMS, WW standard model measurement
                                                                         3.5
                                                                              no
# cms 1306 1126 WW
                          CMS. WW standard model measurement (7TeV
                                                                         4.9
                                                                              no
# cms_smp_12_006
                          CMS, WZ standard model (3 leptons + etmiss)
                                                                         19.6
                                                                              nο
# cms_sus_12_019
                          CMS, 2 leptons, >= 2 jets + etmiss (dilep edge)
                                                                         19.4
                                                                              no
```


The Analysis Manager


```
This will collect all necessary information to create a full analysis and
Takes care for the creation and implementation of the source files into the code.
Please answer the following questions.
Attention: Your input is NOT saved before you finish this questionnaire!
1. General Information to build analysis
  Analysis Name:
    ATLAS_1234_5678
 Description (short, one line):
    ATLAS: many leptons, few jets
 Description (long, multiple lines, finish with ';;' on a new line):
    ATT.AS
    many leptons, few jets
    sqrt(s) = 9 TeV
    int(L) = 42 fb^-1
  Luminosity (in fb^-1):
    42
 Do you plan to implement control regions to that analysis? [(v)es. (n)o)
    n
```




```
2. Information on Signal Regions
 List all signal regions (one per line, finish with ';;' on a new line):
    11
    21
  [...]
 You now have to add the numbers for each of the given signal regions.
   11
      obs:
        100
      bkg:
        90
      bkg_err:
       15
      S95_obs:
        25
      S95_exp:
        20
    21
      obs:
        200
      bkg:
        180
      bkg_err:
        30
      S95 obs:
        45
      S95_exp:
        35
```



```
3. Settings for Detector Simulation
3.1: Miscellaneous
 To which experiment does the analysis correspond? (A)TLAS, (C)MS
3.2: Electron Isolation
 Do you need any particular isolation criterion? [(y)es, (n)o]
 Isolation 1:
    Which objects should be considered for isolation? [(t)racks. (c)alo objects?
    What is the minimum pt of a surrounding object to be used for isolation? [in GeV]
    What is the dR used for isolation?
    Is there an absolute or a relative upper limit for the surrounding pt? [(a)bsolute, (r)elative]
    What is the maximum surrounding pt used for isolation [in GeV]?
      20
 Do you need more isolation criteria? [(y)es, (n)o]
3.3: Muon Isolation
 Do you need any particular isolation criterion? [(y)es, (n)o]
3.4. Photon Isolation
 Do you need any particular isolation criterion? [(y)es, (n)o]
   n
```



```
3.5: Jets
  Which dR cone radius do you want to use for the FastJet algorithm?
   0.4
  What is the minimum pt of a jet? [in GeV]
    10
  Do you need a separate, extra type of jet? [(y)es, (n)o]
    n
  Do you want to use b-tagging? [(y)es, (n)o]
    у
  b-Tagging 1:
    What is the signal efficiency to tag a b-jet? [in %]
      70
  Do you need more b tags? [(y)es, (n)o]
  b-Tagging 2:
    What is the signal efficiency to tag a b-jet? [in %]
  Do you need more b tags? [(y)es, (n)o]
  Do you want to use tau-tagging? [(y)es, (n)o]
```


Adding an analysis

- Variable values saved in /hdd/Tools/CheckMATE/data/ATLAS 1234 5678 var.i
- Created source file /hdd/Tools/CheckMATE/tools/analysis/src/ATLAS_1234_5678.cc
- Created header file /hdd/Tools/CheckMATE/tools/analysis/include/ATLAS 1234 5678.h
- Updated Makefile
- Updated main source main.cc
- Reference file created
- List of analyses updated

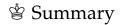
Analysis ATLAS 1234 5678 has been added successfully!

And that's it!

- A simple make will add the analysis to the framework
- Of course, the actual analysis code still has to be written by the user (imagine if this could be automatised...)

Generalities

- All analyses inherit their from a common AnalysisBase class
- A This class takes care of lots of the technical details, i.e. it
 - automatically reads the Delphes tree and provides vectors of Muons, ElecronsTight, Jets,... and missing ET
 - 2 dictates a simple structure similar to Rivet (procedure for the start, procedure for each event, procedure for the end)
 - 3 comes along with many standard functions (overlap removals, isolation checks, kinematical cuts, ...)
 - 4 provides very simple way of counting signal events


Generalities

- All analyses inherit their from a common AnalysisBase class
- A This class takes care of lots of the technical details, i.e. it
 - 1 automatically reads the Delphes tree and provides vectors of Muons, ElectronsTight, Jets,... and missing ET
 - 2 dictates a simple structure similar to Rivet (procedure for the start, procedure for each event, procedure for the end)
 - 3 comes along with many standard functions (overlap removals, isolation checks, kinematical cuts, ...)
 - 4 provides very simple way of counting signal events
- ∆ The user only has to write the lines which
 - 1 choose and cut on the right objects
 - **2** perform lots of tests the event has to pass to not be vetoed
 - if the event fulfills all criteria for signal region X, call line countSignalEvent('X');. That's all

Some example lines


```
void Atlas_conf_2013_047::analyze() {
 missingET->addMuons(muonsCombined);
 electronsLoose = filterPhaseSpace(electronsLoose, 10., -2.47, 2.47);
 muonsCombined = filterPhaseSpace(muonsCombined, 10., -2.4, 2.4);
 jets = filterPhaseSpace(jets, 20., -2.8, 2.8);
 iets = overlapRemoval(iets, electronsLoose, 0.2);
 electronsLoose = overlapRemoval(electronsLoose, jets, 0.4);
 if(!electronsLoose.empty())
   return;
 double HT = 0.:
 for(int j = 0; j < jets.size(); j++)
   HT += jets[j]->PT;
 double mEffInc = missingET->P4().Et() + HT:
 mEffA = missingET->P4().Et() + jets[0]->PT + jets[1]->PT;
 if (missingET->P4().Et()/mEffA > 0.2) {
    countCutflowEvent("AL1"):
   if (mEffInc > 1000.)
     countSignalEvent("AL");
```


User Mode

- △ Input: Event files, cross sections and expected systematic errors
- A CheckMATE consequtively runs Delphes, performs the analyses and statistically evaluates the results
- A It stores lots of intermediate results for the user to check and process otherwise
- å Output: "Allowed" or "Excluded" in its most simple form

Dev Mode

- ∆ Code is transparently written in Python and C++
- AnalysisManager makes definition of new analyses simple
- AnalysisBase class makes coding of new analyses simple too