

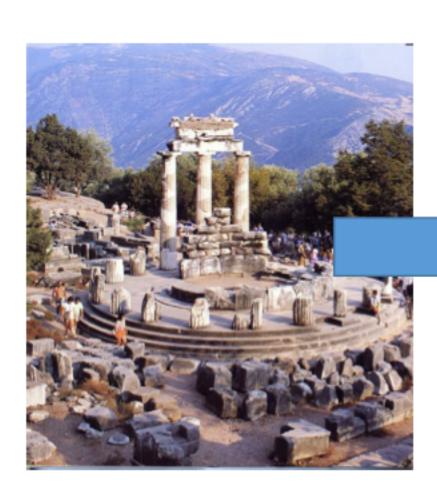
Recasting LHC analyses with MADANALYSIS 5 Problems & solutions

Sam Bein, Monika Blanke, <u>Guillaume Chalons</u>, <u>Eric Conte</u>, <u>Karen de Causmaecker</u>, Beranger Dumont, <u>Benjamin Fuks</u>, Iftah Galon, <u>Sabine Kraml</u>, Suchita Kulkarni, <u>Kentarou Mawatari</u> & <u>Dipan Sengupta (et al.)</u>

CERN - IPHC - LPSC - University of Strasbourg - Upper Alsace University - VUB

Mini-workshop on recasting ATLAS and CMS new physics searches

LPSC Grenoble - September 8-12, 2014

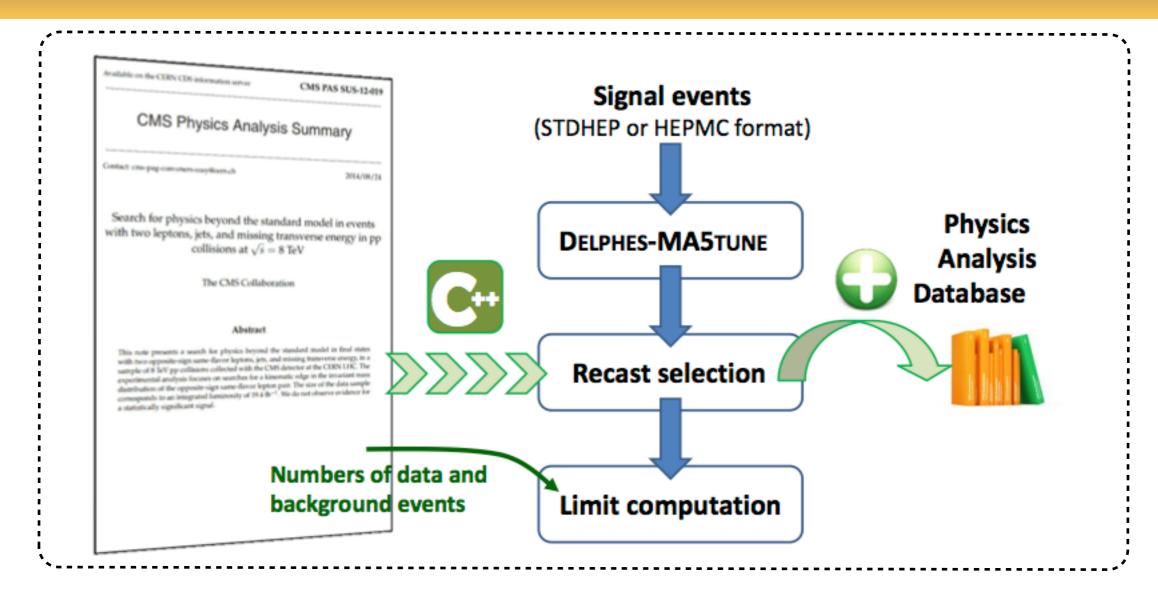

Outline


1. The MA5-tune of DELPHES 3

2. Selected items on the implementation and the validation of LHC analyses

3. Summary

The MA5-tune of DELPHES 3: technicalities


Recasting and designing LHC physics analyses

- Determining the sensitivity of the LHC to a new physics model by analyzing specific signatures
 - * Recasting an existing LHC analysis
 - ★ Generation of signal Monte Carlo event samples
 - ★ Event generation: LHE (parton level) STDHEP/HEPMC (hadron level) ROOT (reconstructed level)
 - * Analysis by mimicking as much as possible the experimental cuts
 - Designing a novel LHC analysis
 - ★ Generation of background and signal Monte Carlo event samples
 - ★ Event generation: LHE (parton level) STDHEP/HEPMC (hadron level) ROOT (reconstructed level)
 - * Analysis by tuning the thresholds to increase a factor of merit of choice

- Monte Carlo production: time and disk space consuming
 - ❖ In order to only do it once:
 - ★ Inclusion in the output ROOT file all information needed for all foreseen works
 - * Analysis-dependent issues (like lepton isolation) to be achieved at the analysis level
 - ❖ The size of the ROOT file must be kept reasonable

A compromise must be found

The MADANALYSIS 5 strategy for recasting an LHC analysis

- Why a tune of DELPHES?
 - The output ROOT file must be flexible and general enough to address any LHC analysis
 - ★ Optimal choice: one ROOT file for any (ATLAS or CMS) analysis
 - ★ Likely option: one CMS and one ATLAS ROOT file
 - ★ Current option: one CMS and many ATLAS ROOT files
 - The standard DELPHES output cannot be used for that purpose

One of the goals of this workshop

Cleaning the ROOT output file

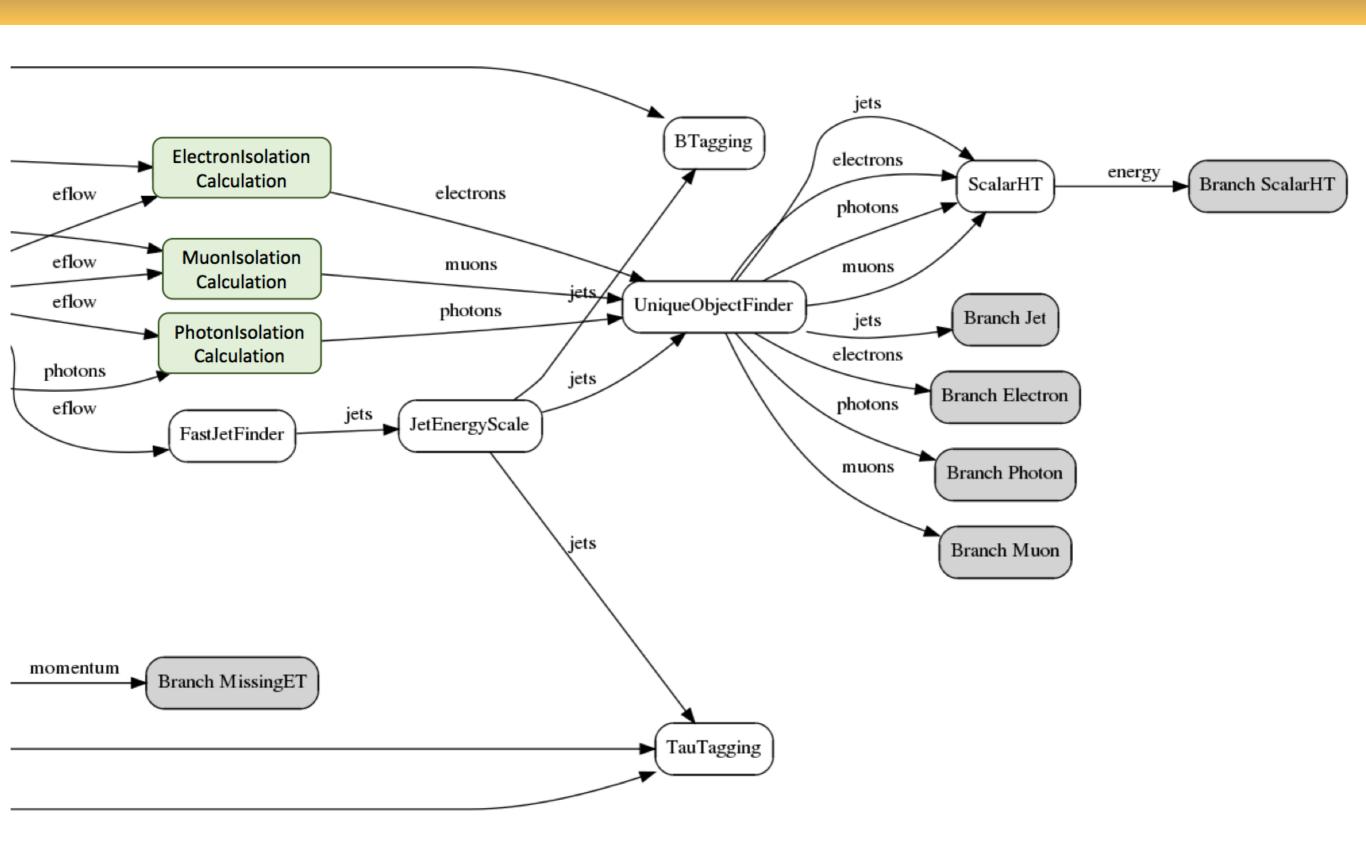
- Generated particles at all levels (parton, hadron, reconstructed)
 - Useful
 - Heavy (disk space consuming)
- The MA5-tune solution
 - * All reconstructed objects are stored, including track information
 - Keeping all initial-state and hard-process particles
 - * The particle history for beauty and charm hadrons (starting from the hard process)
 - Final-state electrons and muons are linked to their mother, ..., grand-grand-mother ★ Useful to determine whether the lepton is prompt, issued from a tau, etc.
 - * All other particles are discarded
- Linking reconstructed and generated objects
 - Leptons: reconstructed leptons are smeared generated leptons
 - ★ Easy to link without any mismatch (included in the output file)
 - Jets: reconstructed jets can be matched to generated partons (via a standard ΔR method)
 - ★ To be implemented at the analysis level by the user
 - ★ Private methods exist for the moment (to be public one day?)
 - ★ Limitations: light partons arising from the showering are not stored in the output file
 - ★ Could be included at the DELPHES level

Lepton isolation

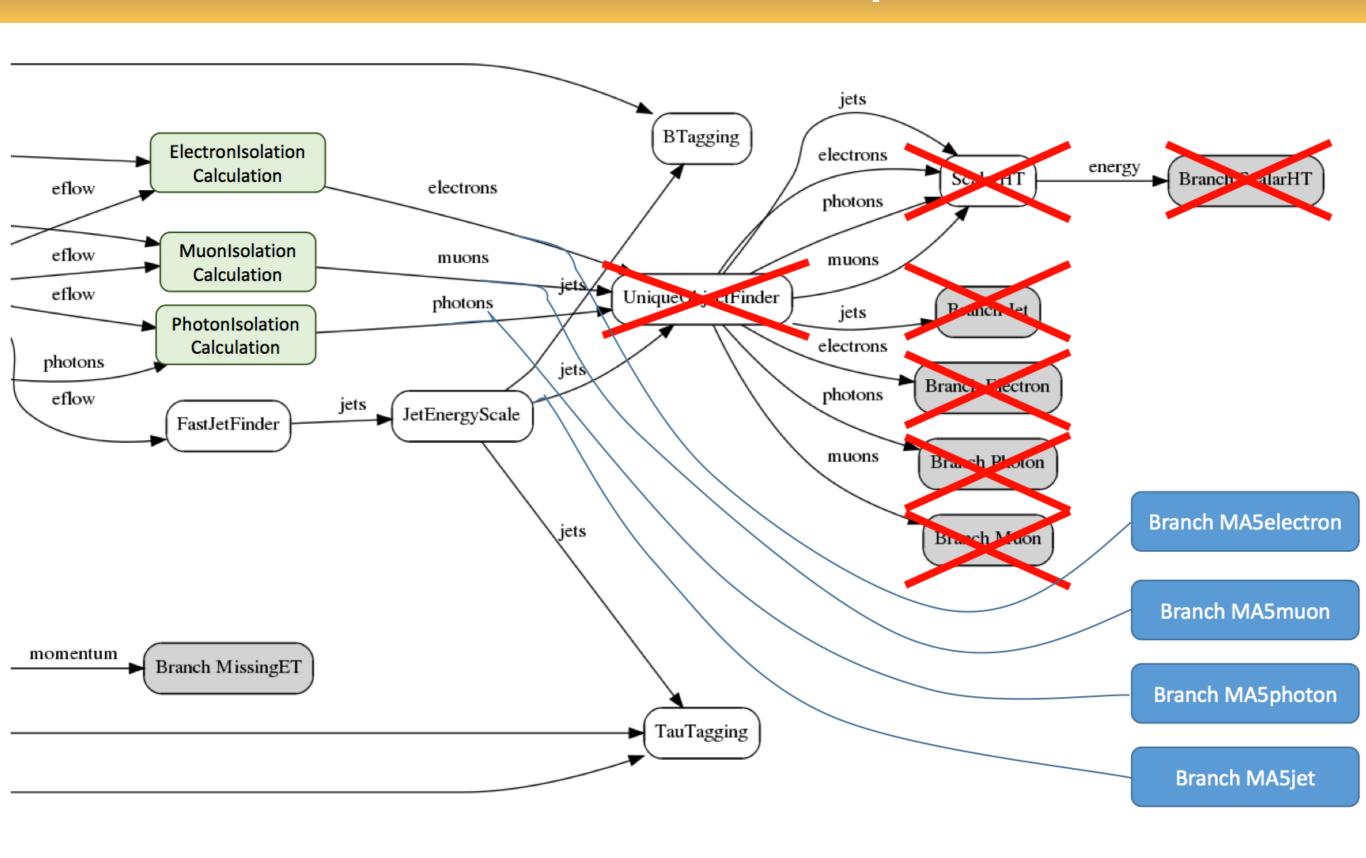
- ★ Lepton isolation is analysis-dependent
 - * The output ROOT file must contain the necessary information
 - Storing track, calorimeter, etc., information is too heavy
- ◆ The MA5-tune solution
 - ❖ Storing isolation variables that are computed at the DELPHES level
 - Sum of the pt of all tracks and of all calorimetric deposits in a given cone around the lepton
 - Number of tracks in this cone
 - * Particle flow isolation information is also retained (currently under study)

	DR=0.2	DR=0.3	DR=0.4	DR=0.5
Tracker isolation				
Calorimeter isolation				
ParticleFlow isolation				

- The p_T threshold is fixed at the level of DELPHES
- ◆ Cleaning of the jet collection
 - In standard DELPHES, isolated leptons are removed from the jet collection (the UNIQUEOBJECTFINDER method)
 - ❖ By-passed in the MA5-tune
 - Jet cleaning must be done at the analysis level (e.g., a ΔR method)
 - ♣ The H_T variable must be recalculated


B-tagging

- Two strategies are implemented in DELPHES
 - * Parameterization (in the detector card): several benchmark (or cards) are thus required
 - ❖ Track-counting algorithm


- ◆ The (old) MA5-tune solution
 - * A parametric approach included in the detector card

- ◆ The (new) MA5-tune solution
 - * A parametric approach to be performed at the analysis level
 - ❖ A matching between jets and partons is required
 - ★ CMS: currently developed by CMS b-taggging experts themselves in Strasbourg
 - ★ ATLAS: nothing is done at the moment

Inside the code: isolation

Inside the code: output

Future developments

- → c-tagging
 - On-going studies
 - Status: no implementation so far
- ◆ Displaced vertices
 - ♣ Account for particle lifetimes
 - * Efficiency for track reconstruction depending on its impact parameters and pseudorapidity
 - ❖ Status: existing old private DELPHES 2 code
- → Muon electric charge mis-identification
 - ♣ Important for analysis based on same-sign dileptons
 - ❖ Status: existing old private DELPHES 2 code
- ♦ Identification of hadronically decaying tau
 - Current strategy: a tau is a jet identified as a tau
 - ♣ Improvement strategy 1: dedicated algorithm like in DELPHES 2
 - ❖ Improvement strategy 2: efficiency and resolution effects applied on the generated taus
 - ❖ Status: really needed soon

Outline

The MA5-tune of DELPHES 3

2. Selected items on the implementation and the validation of LHC analyses

3. Summary

Implementation and validation of ATLAS analyses

Published or to-be published

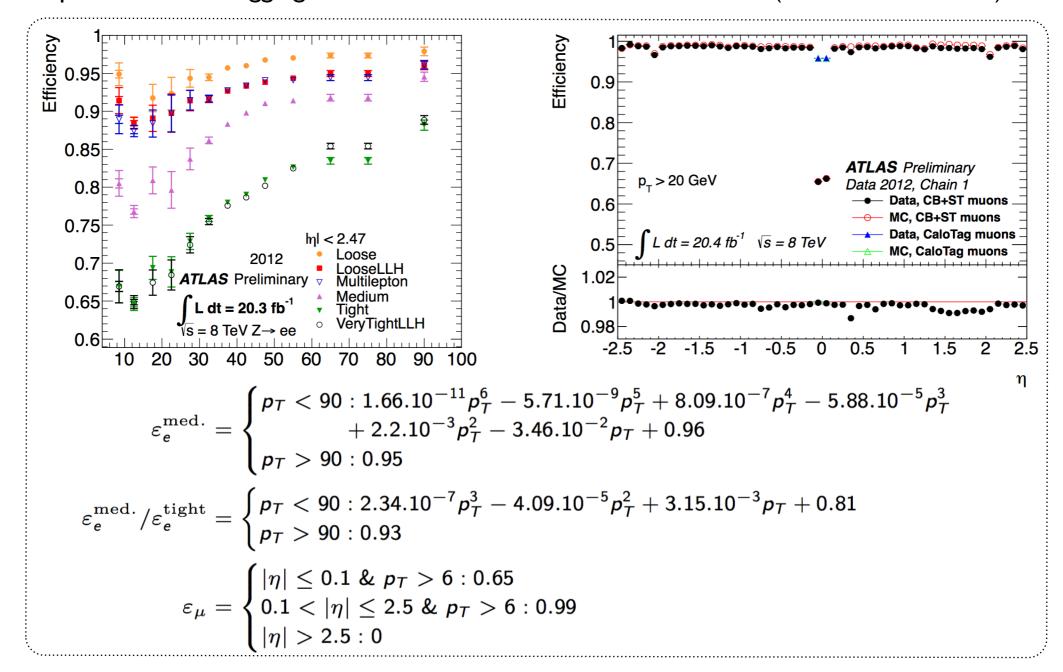
Problems with the validation

Starting validation

- ATLAS-SUS-2013-04 (1308.1841): multijet + missing energy [Blanke, Fuks, Galon]
- 2. ATLAS-SUS-2013-05 (1308.2631): two b-jets + missing energy
- 3. ATLAS-SUS-2013-11 (1403.5294): two leptons + missing energy
- 4. ATLAS-SUS-2013-12 (1402.7029): three leptons + missing energy [de Causmaecker, Fuks, Mawatari]
- 5. ATLAS-SUS-2013-13 (1405.5086): at least four leptons + missing energy [Mawatari]
- 6. ATLAS-SUS-2013-14 (1407.0350): two hadronic taus + missing energy [de Causmaecker, Fuks]
- 7. ATLAS-SUS-2013-18 (1403.4853): at least three b-jets + missing energy [Mitzka, Fuks]
- 8. ATLAS-SUS-2013-19 (1407.0600): two leptons + b-jet(s) + missing energy

Implementation and validation of CMS analyses

Published or to-be published


Problems with the validation

Starting validation

- CMS-B2G-I3-003: vector-like quarks in multileptonic events [Alloul, Basso, Fuks]
- 2. CMS-SUS-12-028 (1303.2985): α_T
- 3. CMS-SUS-13-002 (1404.5801): three or more lepton + missing energy [Alloul, Basso, Fuks]
- 4. CMS-SUS-13-007 (1311.4937): single lepton + b-jets + missing energy [Kraml, Laa, Sengupta]
- 5. CMS-SUS-13-008: three leptons + 1 b-jet + missing energy [Alloul, Basso, Fuks]
- 6. CMS-SUS-13-011 (1308.1586): stops in the single lepton mode [Dumont, Fuks, Wymant]
- 7. CMS-SUS-13-012 (1402.4770): multijets and missing energy [Bein, Sengupta]
- 8. CMS-SUS-13-013 (1311.6736): same-sign dilepton + jets [Alloul, Basso, Fuks]
- 9. CMS-SUS-13-015: stops in multijet + missing energy
- CMS-SUS-13-016: opposite sign dilepton, b-jets and missing energy

Lepton identification in ATLAS analyses

- ◆ Original implementation of ATLAS-SUS-2013-05: large differences with ATLAS results
 - Discussions with ATLAS people
 - Update of the lepton efficiencies (from ATLAS-CONF-2014-032)
 - ❖ Update of the b-tagging identification and misidentification rates (see next slides too)

Description	Signal Re	gions
Description	SRA	SRB
Event cleaning	Common to	all SR
Lepton veto	No e/μ after overlap removal wi	ith $p_{\rm T} > 7(6)$ GeV for $e(\mu)$
$E_{ m T}^{ m miss}$	> 150 GeV	> 250 GeV
Leading jet $p_{\mathrm{T}}(j_1)$	> 130 GeV	> 150 GeV
Second jet $p_{\mathrm{T}}(j_2)$	> 50 GeV,	> 30 GeV
Third jet $p_{\mathrm{T}}(j_3)$	veto if $> 50 \text{ GeV}$	> 30 GeV
$\Delta\phi(m{p}_{ m T}^{ m miss},j_1)$	-	> 2.5
b-tagging	leading 2 jets	2nd- and 3rd-leading jets
	$(p_{\rm T} > 50 \; { m GeV}, \eta < 2.5)$	$p_{ m T} > 30 \; { m GeV}, \eta < 2.5)$
	$n_{b ext{-jets}}$ =	= 2
$\Delta\phi_{ m min}$	> 0.4	> 0.4
$E_{ m T}^{ m miss}/m_{ m eff}(k)$	$E_{\mathrm{T}}^{\mathrm{miss}}/m_{\mathrm{eff}}(2) > 0.25$	$E_{\mathrm{T}}^{\mathrm{miss}}/m_{\mathrm{eff}}(3) > 0.25$
$m_{ m CT}$	> 150, 200, 250, 300, 350 GeV	-
$H_{\mathrm{T,3}}$	-	< 50 GeV
m_{bb}	$> 200~{ m GeV}$	-

Table 1. Summary of the event selection in each signal region.

Description of ATLAS-SUS-2013-05 (2)

- ▶ No LHE input files were provided by the ATLAS collab.
- ➤ Simulate the signal sample through MadGraph5_v1.4.8+PYTHIA6 then passed to DELPHESMA5TUNE using generic official SLHA files provided by the ATLAS SUSY conveners
- For SRA four benchmark point are given for validation
 - Two for the cutflows

Two for the distributions

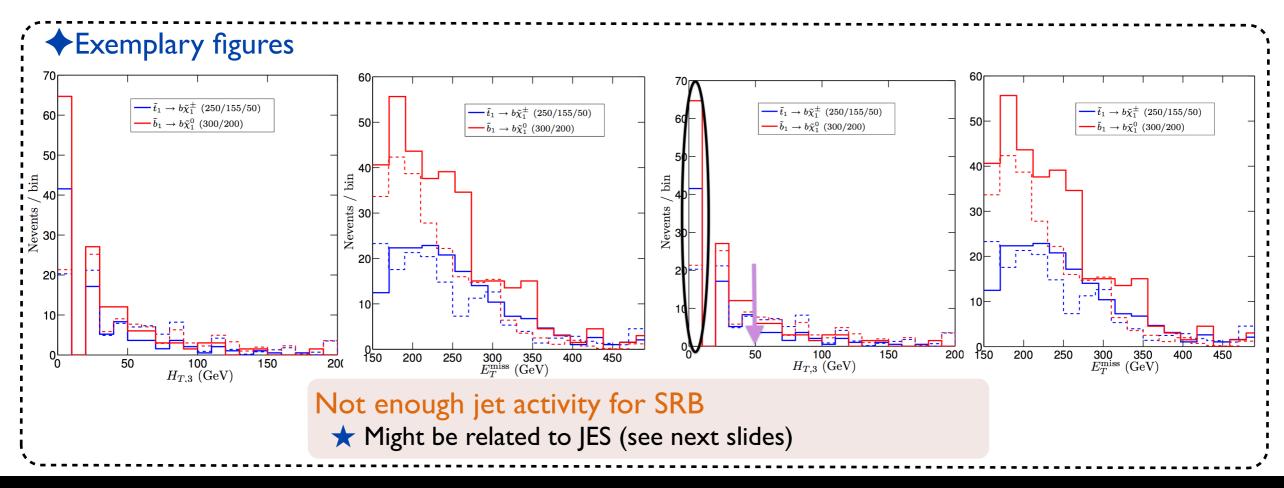
$$(m_{\tilde{b}_1}, m_{\tilde{\chi}_1^0}) = (500, 1) \text{ GeV}$$
 $(m_{\tilde{t}_1}, m_{\tilde{\chi}_1^{\pm}}, m_{\tilde{\chi}_1^0}) = (500, 105, 100) \text{ GeV}$

- For SRB four benchmark point are given for validation
 - Two for the cutflows

$$(m_{\tilde{b}_1}, m_{\tilde{\chi}_1^0}) = (350, 320) \text{ GeV}$$
 $(m_{\tilde{t}_1}, m_{\tilde{\chi}_1^{\pm}}, m_{\tilde{\chi}_1^0}) = (500, 420, 400) \text{ GeV}$

Two for the distributions

$$(m_{\tilde{b}_1}, m_{\tilde{\chi}_1^0}) = (300, 200) \text{ GeV}$$
 $(m_{\tilde{t}_1}, m_{\tilde{\chi}_1^{\pm}}, m_{\tilde{\chi}_1^0}) = (250, 155, 150) \text{ GeV}$


♦Exemplary cut-flow tables

	m	$_{\tilde{b}_1} = 500 $	GeV	m	$\tilde{t}_1 = 500 \text{ G}$	SeV
cut	ATLAS	MA 5	rel.	ATLAS	MA5	rel.
$E_T^{ m miss} > 80$ GeV filter	1606.0	1628.2	+1.38%	1632.0	1585.2	-2.87%
+ Lepton veto	1505.0	1223.5	-18.7%	1061.0	863.2	-18.6%
$+$ $E_{T}^{ m miss} > 150$ GeV	1323.0	1052.2	-20.5%	859.0	696.3	-18.9%
+ Jet Selection	119.0	142.3	+19.6%	39.0	47.6	+22.0%
$+ M_{bb} > 200 \text{ GeV}$	96.0	116.5	+21.4%	32.0	38.8	+21.5%
$+ M_{CT} > 150 \text{ GeV}$	82.0	97.5	+18.9%	26.8	31.7	+18.3%
$+ M_{CT} > 200 \text{ GeV}$	67.0	80.7	+20.4%	20.2	24.5	+21.3%
$+ M_{CT} > 250 \text{ GeV}$	51.0	60.8	+19.0%	13.2	16.6	+25.8%
$+ M_{CT} > 300 \text{ GeV}$	35.0	42.3	+20.9%	7.7	9.2	+19.5%

	m	$_{\tilde{b}_1} = 350 \text{ G}$	GeV	m	$_{\tilde{t}_1} = 500 \text{ G}$	GeV
cut	ATLAS	MA 5	rel.	ATLAS	MA5	rel.
$E_T^{ m miss} >$ 80 GeV filter + Lepton veto + $E_T^{ m miss} >$ 250 GeV + Jet Selection	6221.0 4069.0 757.0 7.9	5963.7 4450.4 724.5 7.5	-4.13% +9.37% -4.29% -5.06%	1329.0 669.0 93.0 6.2	1117.9 702.9 86.8 5.7	$ \begin{array}{r} -15.9\% \\ +5.07\% \\ -6.67\% \\ -8.06\% \end{array} $
$+ H_{T,3} < 50 \text{ GeV}$	5.2	6.6	+26.9%	3.0	4.6	+53.3%

Lepton veto issues:

★ Might be related to lepton isolation (see next slides too)

benchmark	σ_{95} MA5	σ_{95} ATLAS	bestSR MA5	bestSR ATLAS
b300_n200	0.75 pb	1.17 pb	SRB	SRB
b350_n320	3.31 pb	4.24 pb	SRB	SRB
b500_n1	0.0166 pb	0.0298 pb	SRA MCT ₃₀₀	SRA MCT ₃₀₀
t250_c155_n150	1.30 pb	3.65 pb	SRB	SRB
t500_c105_n100	0.0253 pb	0.0284 pb	SRA MCT ₃₀₀	SRA MCT ₂₀₀
t500_c120_n100	0.0503 pb	0.117 pb	SRA MCT ₂₅₀	SRA MCT ₃₀₀
t500_c420_n400	0.51 pb	2.56 pb	SRB	SRB

benchmark	(1-CLs)% MA5	(1-CLs)% ATLAS
b300_n200	100.0%	99.8%
b350_n320	35.9%	32.5%
b500_n1	100.0%	99.7%
t250_c155_n150	100.0%	99.1%
t500_c105_n100	100.0%	98.8%
t500_c120_n100	99.8%	90.2%
t500_c420_n400	24.8%	14.9%

Overall our recasted analysis is more constraining than the ATLAS one.

- ♦ Improved description of the b-taggging with the implementation of ATLAS-SUS-2013-19
 - ♣ Update of the b-tagging efficiency from ATLAS-CONF-2014-004
 - ❖ Foreseen update with the b-jet misidentification rates from ATLAS-CONF-2014-046
- ◆ Description of ATLAS-SUS-2013-19

Two OS 10 GeV preselected leptons
lepton isolation
$m_{\ell\ell} > 20 \; { m GeV}$
p_T leading lepton > 25 GeV

	Lepton	ic M_{T2}		Hadronic M_{T2}
	Ζv	veto .		# b-jets = 2
	$oldsymbol{\Delta}\phi$	> 1		$M_{T2}^{\rm b-jet} > 160$
	$oldsymbol{\Delta}\phi_{oldsymbol{b}}$	< 1.5		$ \tilde{M}_{T2} < 90$
$M_{T2} > 90$	$M_{T2} > 100$	$M_{T2} > 110$	$M_{T2} > 120$	$1^{st}\ell p_T < 60$
-	1^{st} jet $p_T > 100$	1^{st} jet $p_T > 20$	-	-
_	2^{nd} jet $p_T > 50$	2^{nd} jet $p_T > 20$	-	-

♦Exemplary cut-flow table

cut	# events	rel.	# events
	(scaled to 100000.0)		(official)
Initial number of events	100000.0	100000.0	
Two 10 GeV SF preselected ℓ	2893.0	-97.1%	2212.9
lepton isolation	657.3	-77.3%	1646.1
opposite sign leptons	657.3	-0.0%	1594.0
$m_{ } > 20 \; { m GeV}$	607.5	-7.6%	1506.0
Trigger lepton p_T requirement	507.5	-16.5%	1319.0
2 <i>b</i> -jets	209.3	-58.8%	529.9
$m_{T2}^{\mathrm{b-jet}} > 160 \; GeV$	28.1	-86.6%	42.3
$m_{T2} < 90 \text{ GeV}$	28.1	-0.0%	42.3
leading lepton $p_{\tau} < 60 \text{ GeV}$	22.3	-20.6%	29.9

Lepton isolation issues

Jet energy scale in the ATLAS card

- ◆ Original implementation of ATLAS-SUS-2013-04: large differences with ATLAS
 - Discussions with ATLAS people
 - ◆ Design of JES correction functions based on the Monte Carlo truth and DELPHES-MA5TUNE

```
\begin{aligned} p_T &> 100.0: 1.00/(1.00-0.015874205774624516-1.5596526607501018*\ln(p_T)/p_T) \\ p_T &\leq 100.0: 1.00/(1.00-0.28148029547368: 0.019155389997112204*\ln(95.6961580995732*p_T)) \end{aligned}
```

Exemplary cut-flow table [ATLAS-SUS-2013-14: Blanke, Fuks, Galon]

Cut	# events	# events	$7 ext{ jets } (p_T > 80 ext{ GeV})$	7.44	7.53
	MadAnalysis 5	(official)	$E_T/\sqrt{H_T} > 4 \; { m GeV}^{1/2}$	6.08	6.25
Initial number of events	206.3	206.3	\rightarrow without b-tags	0.14	0.31
6 jets with $E_T > 45 \text{ GeV}$	150.3	168	\rightarrow with 1 b-tag	1.0	1.3
lepton veto	89.4	78	\rightarrow with 2 b-tags	4.9	5.1
8 jets $(p_T > 50 \text{ GeV})$	15.0	16.3	$\geq 8 \text{ jets } (p_T > 80 \text{ GeV})$	2.6	3.2
$E_T/\sqrt{H_T} > 4 \text{ GeV}^{1/2}$	12.4	14.1	$E_T/\sqrt{H_T} > 4 \; {\rm GeV^{1/2}}$	2.0	2.6
\rightarrow without b-tags	0.51	0.85	\rightarrow without b-tags	0.02	0.13
\rightarrow with 1 b-tag	2.1	3	\rightarrow with 1 b-tag	0.23	0.55
\rightarrow with 2 b-tags	9.7	11	\rightarrow with 2 b-tags	1.7	2.1

Good agreement for many signal regions

- ♦ Not working for some ATLAS analyses; improvements for some other
 - * Further studies are on-going, based on well-controlled Monte Carlo samples

Lepton isolation and overlap removal in ATLAS analyses

♦ Most of the analyses dealing with leptons have problems

cut	our nev	exp events
Initial number of events	55.0	55.0
4 leptons	28.1	36.7
0 tau	25.6	21.4
trigger	25.6	21.3
Z-veto SFOS	15.9	11.6
etmiss > 50	13.4	10.0

ı	L	4	-	٦	ı		_	•	٦	١,)	•		2)	•	L	,)	١	'	_	_	١	L	J	,	l)	,		ı	l	٠	٠)				ć	1	ľ	١	V	c	1	ļ	i	d	L	ľ	_	l			

cut	our nev	exp events
Initial number of events	28033.7	28033.7
triggers	15759.1	-
$\mathrm{dR}(\mathrm{leptons}) > 0.3$	15742.3	-
3 signal leptons	1823.6	-
1 electron or muon	1823.6	-
no taus	583.1	-
0 sfos	176.6	19.0
b jet veto	175.2	18.0
etmiss > 50	91.1	12.0
3rd lepton pt > 20	32.2	7.0
$\min \mathrm{dphi}(\mathrm{llp}) <= 1.0$	15.4	5.0

[ATLAS-SUS-2013-12: de Causmaecker, Fuks, Mawatari] 🗄

cut	# events (scaled to 80000.0)	# events (official)
Initial number of events	80000.0	,
Two 10 GeV SF preselected ℓ	1881.2	3811.0
lepton isolation	1031.8	3197.0
opposite sign leptons	1031.8	3167.0
$m_{ } > 20 \text{ GeV}$	1013.9	3144.0
Trigger lepton p_T requirement	1005.0	3253.5
Z veto	777.3	2463.6
$\Delta \phi > 1$	654.5	1834.9
$\Delta\phi_b < 1.5$	479.8	1402.8
$m_{T2} > 90 \text{ GeV}$	155.1	396.5
[ATLAS-SUS-2013-19: Chalons]		

Lepton identification is a problem

- On-going discussions with ATLAS people
- Status: object overlap removal might be the issue

Hadronic taus

Some of our recasted analyses employ hadronically-decaying tau

cut	our nev	exp events
Initial number of events	4384.8	4384.8
triggers	1187.8	-
dR(leptons) > 0.3	1186.7	-
3 signal leptons	114.4	-
1 electron or muon	114.4	-
two taus	32.2	48.0
b jet veto	31.8	46.0
etmiss > 50	23.7	35.0
mt2 max > 100	7.7	14.0

[ATLAS-SUS-2013-12: de Causmaecker, Fuks, Mawatari]

cut	sim events	exp events
Initial number of events	30000.0	29500.0
at least two leptons	4630.0	1499.1
at least two taus and e/mu veto	806.0	352.5
ditau trigger	576.0	175.6
exactly 2 os taus, jet/z-veto	34.0	22.4
$\mathrm{mt2} > 30~\mathrm{gev}$	14.0	16.1
$\mathrm{mttau1} + \mathrm{mttau2} > 250~\mathrm{gev}$	8.0	8.5

[ATLAS-SUS-2013-14: de Causmaecker, Fuks]

- ◆ Electron and muon isolation might be the problem
 - ♣ Further investigations are necessary
 - ❖ Status: object overlap removal might be the issue

Outline

1. The MA5-tune of DELPHES 3

2. Selected items on the implementation and the validation of LHC analyses

3. Summary

Summary

- ◆ The MA5-tune of MADANALYSIS 5
 - New lepton and photon isolation module
 - Cleaning of the output file
 - Future novel b-tagging startegy
 - ❖ Developments in the pipeline: lepton charge misidentification, c and tau tagging, displaced vertices

- Applications to several ATLAS and CMS analyses
 - Good agreement for CMS analyses
 - ★ Current problems with SUS-13-013 under investigation
 - Lots of troubles with ATLAS analyses
 - ★ JES issues under investigation
 - ★ Lepton identification and object overlap removal issues under investigation
 - ★ Maybe tau issues under investigation