
Atelier Sûreté-MSFR Grenoble, France, 24 – 25 Nov. 2014

A simplified benchmark for MSFR modelling tools

Simulation tools for the MSFR

- Legacy reactor physics codes are not suitable for MSFR steady-state and transient analysis
- (Unfortunately) the development of new tools is required
- These new tools should be tested/verified/compared

Code development in the EVOL project

Several multiphysics tools have been developed, adopting a variety of approaches:

- Neutronics
 - Deterministic (mainly few-group diffusion)
 - Monte Carlo
 - Hybrid (e.g., fission matrix)
- Spatial-discretization
 - Finite-volume
 - Finite-element
 - •
- Time-integration/coupling
 - Explicit
 - Implicit (Euler, BDF, RK, ...)

Code development in the EVOL project

- Code availability
 - Open source-based (e.g., OpenFOAM, SERPENT, ...)
 - In-house (TUDelft, KIT Karlsruhe, ...)
 - Commercial (COMSOL, FLUENT, ...)
 - 2D (r, z,) codes
 - Fully 3D codes
 - Parallel computing capabilities ?

How should we test/verify/compare the different tools?

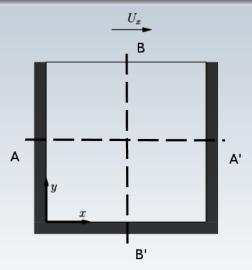
How should we test/verify/compare the different tools? The problem

Results of the EVOL CFD benchmark and comparisons among the partners highlighted differences for steady-state and transient simulations.

Several suspects have been identified:

- Nuclear data libraries
- Delayed neutrons data
- Turbulence models
- Geometrical domain approximations
- Coarse mesh discretization
- •

Impossible to verify the consistency of the results of the different tools!


How should we test/verify/compare the different tools? A possible solution

Definition of a simplified benchmark for the MSFR simulation tools.

Let's get rid of any OTHER source of discrepancies:

- Prescribed nuclear data library (e.g., JEFF-3.1.1)
- Few-group cross-sections provided
- Simple 2D geometry
- No turbulence
- Cartesian discretization

Simplified benchmark for the MSFR simulation tools Simple geometry

Dimensions: 2m x 2m.

Simplified benchmark for the MSFR simulation tools

Material composition:

- Flibe (LiF + BeF₂ at 2:1). Natural Li enrichment
- ²³⁵U as fissile

High neutronics similarity with the MSFR in terms of:

- Reaction rates ratios (similar neutron spectrum)
- k_{inf} , dominance ratio

Simplified benchmark for the MSFR simulation tools Main steps

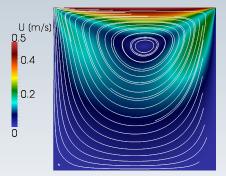
Phase-0 Single-physics verification

Step-0.1 Velocity field Step-0.2 Neutronics

Step-0.3 Temperature field

Phase-1 Steady-state coupling

Step-1.1 Circulating fuel


Step-1.3 Power coupling

Step-1.5 Buoyancy

Step-1.7 Full coupling

Phase-2 Transient simulations

Step-0.1 Velocity field

Velocity U_x imposed at the top boundary of the square 2D cavity. Viscosity increased to have stable laminar solution.

Simplified benchmark for the MSFR simulation tools Main steps

Phase-0 Single-physics verification

Step-0.1 Velocity field

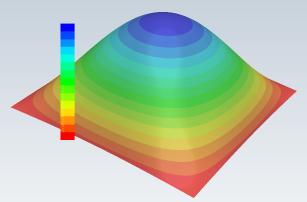
Step-0.2 Neutronics

Step-0.3 Temperature field

Phase-1 Steady-state coupling

Step-1.1 Circulating fuel

Step-1.3 Power coupling


Step-1.5 Buoyancy

Step-1.7 Full coupling

Phase-2 Transient simulations

Step-0.2 Scalar neutron flux distribution

Scalar Neutron Flux (a.u.)

Vacuum boundary conditions.

Very small spectrum change from the center to the boundaries.

Simplified benchmark for the MSFR simulation tools Main steps

Phase-0 Single-physics verification

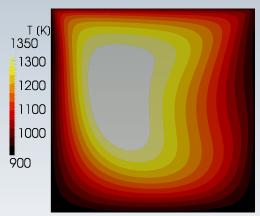
Step-0.1 Velocity field

Step-0.2 Neutronics

Step-0.3 Temperature field

Phase-1 Steady-state coupling

Step-1.1 Circulating fuel


Step-1.3 Power coupling

Step-1.5 Buoyancy

Step-1.7 Full coupling

Phase-2 Transient simulations

Step-0.3 Temperature field

Heat source distribution from Step-0.1. Velocity field from Step-0.2. $q'' = h \cdot (T - T_{cold}) \ T_{cold} = 900 K$. Thermal conductivity $1 \ W/m \cdot K$.

Simplified benchmark for the MSFR simulation tools Main steps

Phase-0 Single-physics verification

Step-0.1 Velocity field

Step-0.2 Neutronics

Step-0.3 Temperature field

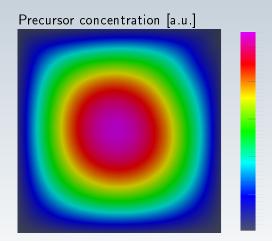
Phase-1 Steady-state coupling

Step-1.1 Circulating fuel

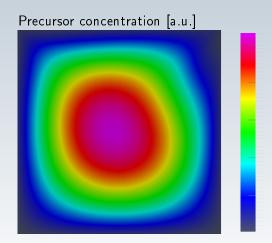
Step-1.3 Power coupling

Step-1.5 Buoyancy

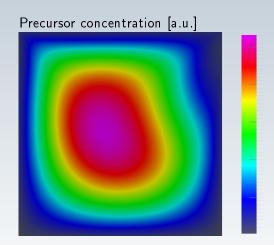
Step-1.7 Full coupling

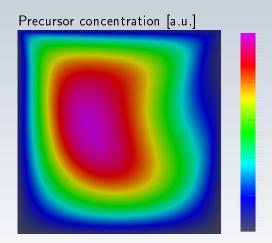

Phase-2 Transient simulations

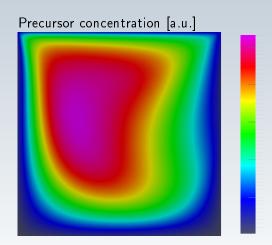
Step-1.1 "Circulating-fuel" (one-way coupling)

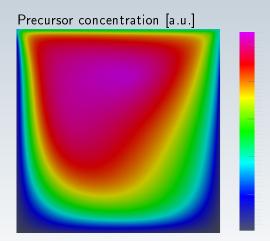

Is the effect of delayed neutron precursors motion correctly taken into account?

Main "observable": DNP distributions & β_{eff} decrease

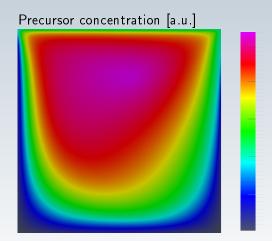

Fixed velocity field (Step-0.1) Uniform fuel temperature (900K)


Delayed neutron precursors distribution of the Step-1.1 7^{th} DNP family, $\lambda \sim 1.63 s^{-1}$


Delayed neutron precursors distribution of the Step-1.1 6^{th} DNP family, $\lambda \sim 0.67 s^{-1}$



Delayed neutron precursors distribution of the Step-1.1 5^{th} DNP family, $\lambda \sim 0.29 s^{-1}$



Delayed neutron precursors distribution of the Step-1.1 4^{th} DNP family, $\lambda \sim 0.13s^{-1}$



Delayed neutron precursors distribution of the Step-1.1 2^{nd} DNP family, $\lambda \sim 0.028 s^{-1}$

Delayed neutron precursors distribution of the Step-1.1 $_{1^{st}}$ DNP $_{\rm family,}~\lambda \sim 0.012 s^{-1}$

Simplified benchmark for the MSFR simulation tools Main steps

Phase-0 Single-physics verification

Step-0.1 Velocity field

Step-0.2 Neutronics Step-0.3 Temperature field

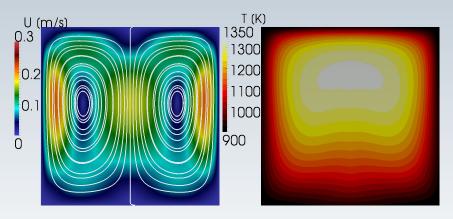
Phase-1 Steady-state coupling

Step-1.1 Circulating fuel

Step-1.3 Power coupling

Step-1.5 Buoyancy

Step-1.7 Full coupling


Phase-2 Transient simulations

Step-1.1 "Buoyancy" (two-way coupling)

Is the system behaviour under natural circulation correctly predicted?

Main "observable": velocity field & reactivity decrease

Step-1.1 "Buoyancy" (two-way coupling) Temperature and velocity fields

Constant fuel volumetric expansion coefficient $(2 \cdot 10^{-4} \, \text{K}^{-1})$.

Simplified benchmark for the MSFR simulation tools Main steps

Phase-0 Single-physics verification

Step-0.1 Velocity field

Step-0.2 Neutronics

Step-0.3 Temperature field

Phase-1 Steady-state coupling

Step-1.1 Circulating fuel

Step-1.3 Power coupling

Step-1.5 Buoyancy

Step-1.7 Full coupling

Phase-2 Transient simulations

Step-2.X Work in progress...

Suggestions?

Summary

A simplified benchmark for MSFR modelling tools is under development

Main goal: test the capabilities related to the MSFR peculiarities (fuel motion and strong multiphysics couplig)

"NON-goal": provide yet another benchmark for stand alone, "single-physics" CFD or neutronics codes

THANK YOU FOR THE ATTENTION

QUESTIONS? SUGGESTIONS? NEW IDEAS?