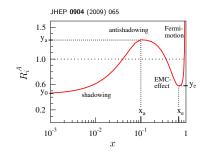
W bosons in pPb collisions in the CMS experiment

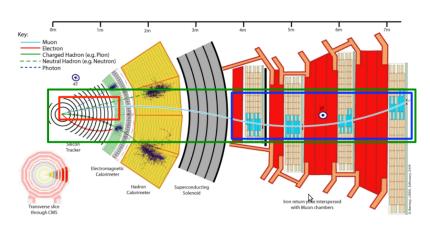
Émilien Chapon

Laboratoire Leprince-Ringuet, École Polytechnique, Palaiseau

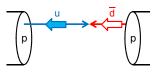
QCD dans les collisions pA et AA: GDR-PH-QCD meeting, WG 3 LPSC Grenoble, Nov. 5-7, 2014



Motivation


- Electroweak bosons are produced and decay very early in the collision.
- They are not affected by the medium.
- Isospin effect for W (different between pp, pn and nn binary collisions).
- However they are sensitive to nuclear modifications of the parton distribution functions.
 - Good probes for nuclear effects in PDFs (shadowing / anti-shadowing).

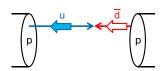
The CMS experiment


- Muon reconstruction: silicon tracker + muon sub-detectors
 - Tracker p_T resolution: 1-2% up to $p_T \sim 100 \, \text{GeV}/c$:
- Electron reconstruction: tracks associated with an ECAL cluster.
 - h/e discrimination: shower shape + fraction of energy in ECAL.

W production

Leading order

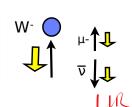
$$u\bar{d} \rightarrow W^+, \quad d\bar{u} \rightarrow W^-$$



W production

Leading order

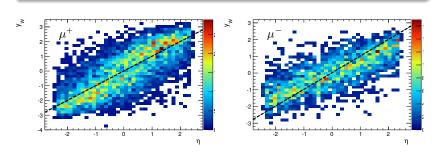
$$u\bar{d} \rightarrow W^+, \quad d\bar{u} \rightarrow W^-$$



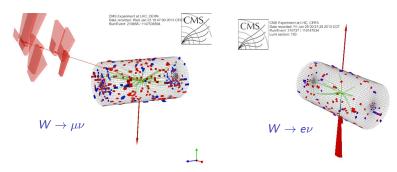
Yield:

- Expect $2 \times$ more W^+ than W^- in pp.
- Expect more balanced production in pPb.

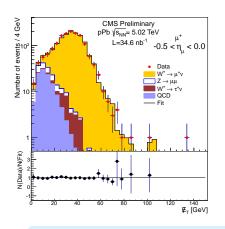
Rapidity

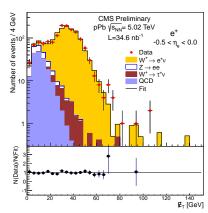

- ullet W boosted towards the valence quark.
- Spin conservation + parity violation: μ^+ (μ^-) boosted back to (away from) midrapidity.
 - ullet \Rightarrow different rapidity distributions between μ^+ and μ^- .

Kinematics


ullet Remember that we don't reconstruct the full kinematics of the W boson (because of the escaping undetected neutrino)

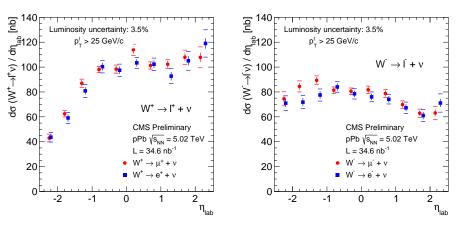
W bosons in pPb collisions


- Asymmetric collisions: new observables compared to PbPb (e.g. forward / backward asymmetries)
 - Better sensibility to nPDF
- higher cross section as compared to PbPb, because of $\sqrt{s_{NN}}$ ($\sqrt{s_{NN}}=2.76\,\text{TeV}$ in PbPb $\rightarrow\sqrt{s_{NN}}=5.02\,\text{TeV}$ in PbPb)



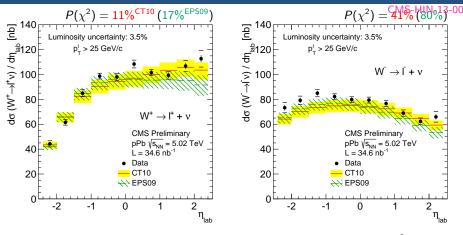
Selection

CMS-HIN-13-007



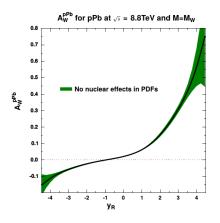
- Electron and muon channels.
- $p_T > 25 \, \text{GeV}$, $|\eta^{\mu}| < 2.4$, $|\eta^{e}| < 2.5$, no $\not\!\!E_T$ cut.
- Requiring isolated lepton (to reject the HF and jet backgrounds)

CMS-HIN-13-007



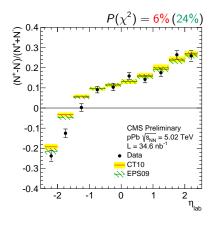
- Good agreement between the electron and muon channels.
- Combine the two channels for a better precision.

Cross section

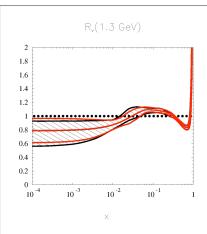

- NLO theory predictions with or without nuclear effects from EPS09¹.
- Good agreement with prediction.
- Poor discrimination between CT10 and CT10+EPS09: build asymmetries.

Charge asymmetry $(N^+ - N^-)/(\overline{N^+ + N^-})$

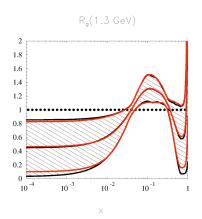
CMS-HIN-13-007

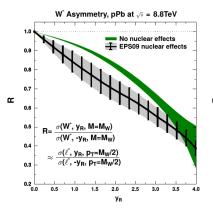


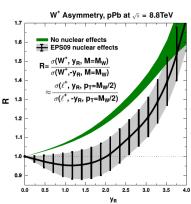
Charge asymmetry $(N^+ - N^-)/(N^+ + N^-)$


CMS-HIN-13-007

• Deviation at large negative η : different u vs. d quark modification?

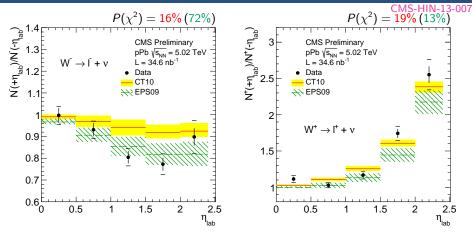



black: original EPS09 red: re-weighted

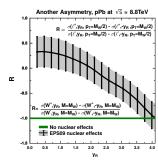

Pía Zurita, HQ 2014

Charge asymmetry doesn't seem to bring anything change in the sea

Forward-backward asymmetry $N^{\pm}(+\eta_{\mathsf{lab}})/N^{\pm}(-\eta_{\mathsf{lab}})$



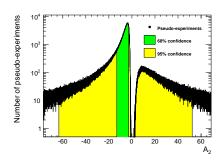
Forward-backward asymmetry $N^{\pm}(+\eta_{\mathsf{lab}})/N^{\pm}(-\eta_{\mathsf{lab}})$



- F/B asymmetries are more sensitive to nuclear modifications.
- Negative leptons favor EPS09.
- Unclear conclusion for positive leptons.

A sensitive but difficult asymmetry

 A_2 $A_2 = \frac{N^+(+\eta) - N^+(-\eta)}{N^-(+\eta) - N^-(-\eta)}$

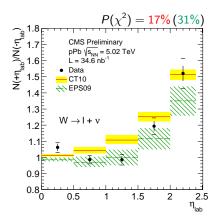


- Proposed by Hannu and Carlos (JHEP 1103 (2011) 071).
- Sensitive to nuclear effects.
- Potentially small number at the denominator: very non Gaussian statistical behavior, difficult to make sense of the measured value.
- Propose the forward-backward asymmetry for combined charges: $\frac{N^+(+\eta)+N^-(+\eta)}{N^+(-\eta)+N^-(-\eta)}, \text{ with similar sensitivity but better statistical behavior.}$

A sensitive but difficult asymmetry

$$A_2$$

$$A_2 = \frac{N^+(+\eta) - N^+(-\eta)}{N^-(+\eta) - N^-(-\eta)}$$



- Proposed by Hannu and Carlos (JHEP 1103 (2011) 071).
- Sensitive to nuclear effects.
- Potentially small number at the denominator: very non Gaussian statistical behavior, difficult to make sense of the measured value.
- Propose the forward-backward asymmetry for combined charges: $\frac{N^+(+\eta)+N^-(+\eta)}{N^+(-\eta)+N^-(-\eta)}, \text{ with similar sensitivity but better statistical behavior}.$

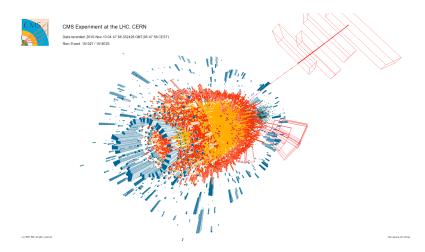
Forward-backward asymmetry $N(+\eta_{\mathsf{lab}})/N(-\eta_{\mathsf{lab}})$

CMS-HIN-13-007

Disfavoring the absence of nuclear modifications of PDFs.

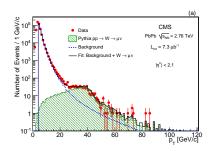
Conclusion

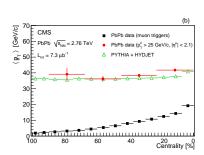
- Sensitivity to nuclear modifications of the PDFs.
 - What additional constrains do this data bring to current nPDF sets?
- Some tension between data and theory in the charge asymmetry (different u and d PDF modifications?).
 - How easy / hard is it for nPDF to accomodate for this?


Systematics (pPb)

Sources	$W o \mu \nu$ (%)	W o e u (%)
EWK background normalization	1.1 - 2.0	1.1 - 2.0
QCD background template	0.1 - 2.0	0.5 - 3.8
Data / MC efficiencies	2.2 - 7.5	3.4 - 12.7
Electron energy scale	_	0.1 - 2.0
Pile-up rejection filter	0.5	0.5
Luminosity	3.5	3.5

$W o \mu \nu$: event display

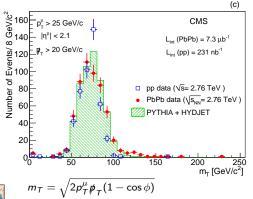




$W \to \mu \nu$: event kinematics

Phys. Lett. B **715** (2012) 66

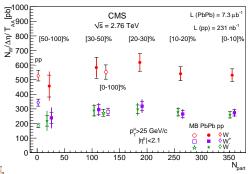
- Signal visible in p_T spectrum of good quality muons.
- Background concentrated at low p_T.


- Missing momentum from tracks.
- Signal: no dependence of p_T with centrality.
- Balanced energy in background events.

Selection of events

One good quality muon ($|\eta^{\mu}| < 2.1$, $p_T^{\mu} > 25\,\mathrm{GeV}/c$) and significant momentum imbalance ($p_T > 20\,\mathrm{GeV}/c$).

- Almost background-free sample.
- Good agreement between PbPb data and simulation.
- Consistent shapes between pp and PbPb data.
 - Sightly worse resolution in PbPb.



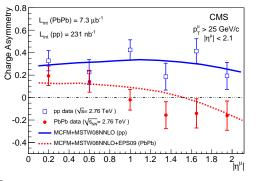
LIR

$W o \mu \nu$: nuclear modification factor

Phys. Lett. B 715 (2012) 66

$$R_{AA}(W) = 1.04 \pm 0.07 \pm 0.12$$

 $R_{AA}(W^{+}) = 0.82 \pm 0.07 \pm 0.09$
 $R_{AA}(W^{-}) = 1.46 \pm 0.14 \pm 0.16$


- No centrality dependence.
- Expect \sim 2 times more W^+ than W^- in pp (isospin).
- More balanced production in PbPb (mixture of protons and neutrons).

Phys. Lett. B 715 (2012) 66

Charge asymmetry =
$$\frac{dN(W^+) - dN(W^-)}{dN(W^+) + dN(W^-)}$$

- pp: small dependence on η , asymmetry $\sim 1/3$.
- PbPb: asymmetry closer to 0, larger dependence with η .

