

Groupe ALICE-JLab

Bilan 2009-2004 & Perspectives ...

HCERES - 12-14 janvier 2015

Composition actuelle du groupe

• 6 permanents:

- ALICE: G. Conesa-Balbastre (CR), J. Faivre (MdC), C. Furget (PR), R. Guernane (CR), C. Silvestre-Tello (CR)
- JLab: E. Voutier (DR), *J.-S. Réal* (DR, 10%)

1 doctorante :

• ALICE: A. Vauthier (2014-2017). Persp. de thèses en cotutelle (Tzukuba)

Evolution sur la période 2009-14:

- ALICE :
 - Permanents : 2 arrivées (G. Conesa-Balbastre en 2010 et C. Silvestre-Tello en 2012) et 2 départs (S. Kox (DR), J-S. Réal (DR) en 2014).
 - Non permanents : 2 post-doc (S. Gadrat et G. Conesa-Balbastre) et 2 thèses (Y. Mao et N. Arbor)
- JLab:
 - Permanents : départ d'E. Voutier à l'IPN Orsay (début 2015)
 - Non permanents : 3 post-doc (A. El Alaoui, C. Maieron, E. Fanchini), 1 visiteur (V. Angelov) et 2 doctorants (J. Dumas-2011 et Y. Perrin-2012)

Stratégie scientifique

Expérience ALICE auprès du LHC

Etude du plasma de quarks et de gluons à l'aide de collisions d'ions lourds ultrarelativistes

– Motivations physiques :

- Production d'un milieu nucléaire déconfiné de haute densité/température
- Caractérisation de ce milieu en termes de degrés de liberté partoniques (QGP) dans le cadre de la théorie de l'interaction forte (QCD)

Méthodes expérimentales :

- Etude de nombreuses signatures pour contraindre les modèles (production de particules, hadronisation au sein des jets, etc ...)
- Comparaison des systèmes p-p, p-Pb avec Pb-Pb.

Run 1: 2010: p-p @ 0,9-7 TeV, Pb-Pb @ 2,76 TeV

2011 : p-p @ 2,76-7 TeV, Pb-Pb @ 2,76 TeV

2012-13: p-p @ 8 TeV, p-Pb @ 5.02 TeV

Stratégie scientifique (suite)

Expérience ALICE auprès du LHC

Etude du plasma de quarks et de gluons à l'aide collisions d'ions lourds ultrarelativistes

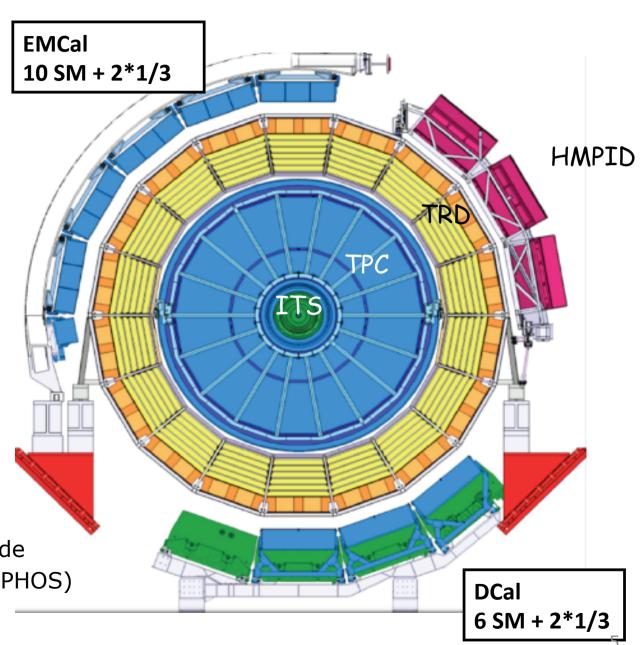
- Activités instrumentales :

- Construction et mise en œuvre du calorimètre électromagnétique EMCal/DCal
- Construction et mise en œuvre du système de déclenchement d'EMCal
- Programme d'upgrade pour les runs 2 et 3 d'ALICE

Forte implication des services techniques du LPSC : instrumentation, électronique, mécanique et informatique (grille de calcul).

- Analyses de physique :

- Etude des mésons neutres et des corrélations photon/pi0-hadron
- Production inclusive de jets et étude des saveurs lourdes


ALICE en 2015

Contribution majeure du LPSC sur la construction des calorimètres EMCal et DCal

Financement ANR/EMCal (Subatech, LPSC, IPHC)
Montant = 550 k€

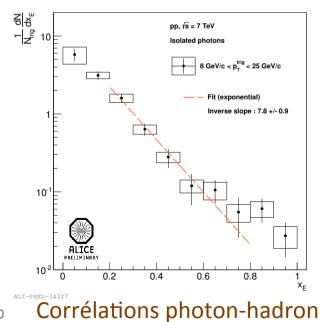
Installation durant LS1

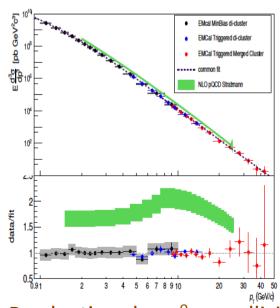
- √ 5 modules TRD
- √ 8 modules DCal
- √ 1 module PHOS
- + amélioration électronique de lecture (TPC, TRD, EMCal et PHOS)

Faits marquants

- Construction et mise en œuvre du calorimètre EMCal/Dcal
 - Assemblage et calibration de 8 + 7 SMs EMCal/Dcal entre 2009 à 2013 (collaboration des services instrumentation et d'électronique avec une implication forte du groupe de physique)
 - Activités d'assemblage et d'intégration de l'électronique (~15000 APDs)
 - Calibration en cosmique (banc de test dédié + outils de contrôle)
 - Développement du système de déclenchement de niveau 1
 (coll. service d'électronique + groupe de physique)
 - Construction carte + contrôle commande
 - Simulation et mise en œuvre du dispositif
 - Tests sous faisceau
 - Développements offline du calorimètre (resp. de coordination d'EMCal-offline)
 - Calibration π^0 du calorimètre (resp. LPSC)

Activités d'assemblage d'EMCal/DCal au LPSC


Faits marquants



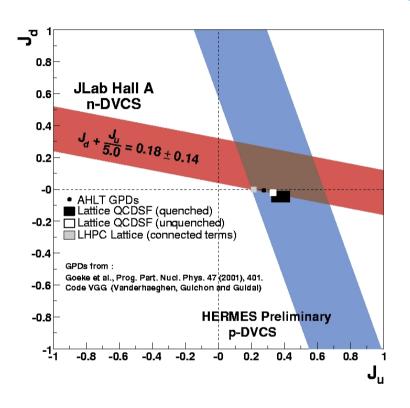
Activités autour des analyses de physique

- Nouvelles méthodes d'identification des photons et des pions neutres à l'aide du calorimètre EMCal (WG-EMCal)
- Mesure de la production des pions neutres et du facteur d'atténuation
- Etude de la fonction de fragmentation en corrélations gamma-hadron en pp et p-Pb
- Mesure de la production inclusive de jets et étiquetage de la beauté en p-p

(G. Conesa-Babastre resp. coordination du PWG-GA pour 2015-16)

Perspectives

- Implication pour le run 2 (2015-17)
 - Prises de données du run 2 (2015-17)
 - Différents systèmes : p-p, p-Pb et Pb-Pb
 - 10 x plus de statistique que pour le run 1
 - Mise en œuvre du calorimètre Dcal
 (calibration, système de déclenchement, contrôle des données ...)
 - Analyses de physique
 - Etude des corrélations photon-hadron (p-p, p-Pb et Pb-Pb)
 - Etiquetage des quarks de b au sein des jets (coll. avec le groupe théorie du LPSC)
- Upgrade dans le cadre des runs 3-4 (>2019)
 - Programme de physique :
 - Etude des corrélations et physique des saveurs lourdes
 - Contributions techniques :
 - Mécanique de l'ITS : moulage des échelles (synergie possible avec le ATLAS ITK)


— ...

Stratégie scientifique

Mesure des distributions généralisées de partons (GPD) à JLab

 Poursuite d'un programme débuté en 2003 avec les premières mesures du DVCS sur le neutron

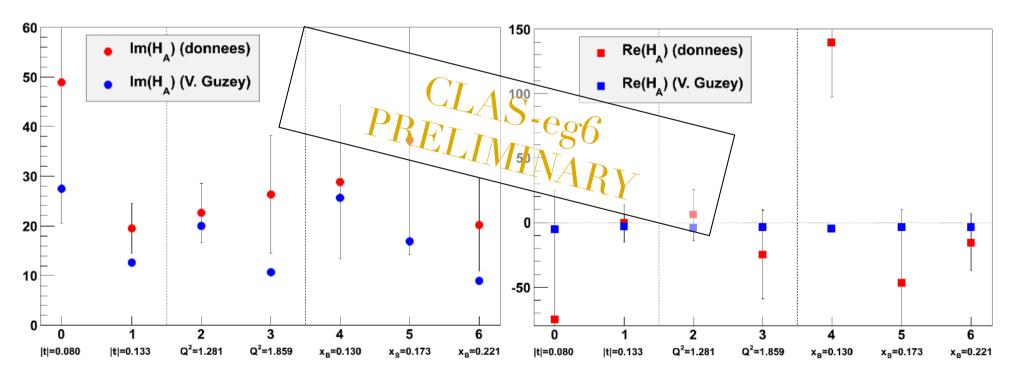
(n-DVCS @ Hall A - co-porte-parole)

- Développement et démonstration de nouvelles méthodes expérimentales pour la mesure des GPD des noyaux (He-DVCS @ CLAS - co-porte-parole)
- Développement de nouveaux outils pour la mesure des GPD

(PEPPo @ Injector – co-porte-parole)

58 Publ. 24 Conf. 11 Jury Th. Co-organisation 3 Ecoles 6 Workshops Direction GDR Nucléon, GDR PH-QCD, Membre UGBoD @ JLab

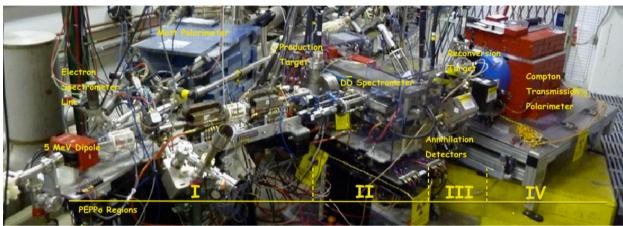
- Fin programmée de l'activité JLab au LPSC
- Poursuite de l'activité à l'IPNO (mutation en cours de traitement)



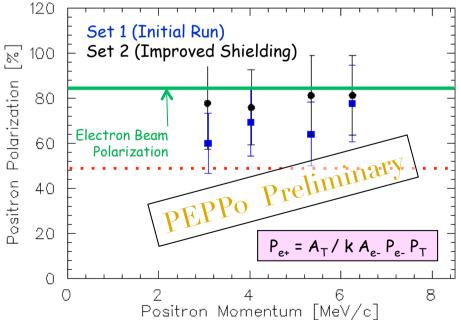
Faits marquants

 Première mesure mondiale de la GPD du noyau d'hélium à partir de l'asymétrie de spin du faisceau.

$$\mathbf{A}_{\mathrm{LU}}^{^{4}\mathrm{He}}(\varphi) = \frac{\alpha_{0}(\varphi) F_{A}(t) \Im \mathbf{m} \big[\mathcal{H}_{A}\big]}{\alpha_{1}(\varphi) F_{A}^{2}(t) + \alpha_{2}(\varphi) F_{A}(t) \Re \mathbf{e} \big[\mathcal{H}_{A}\big] + \alpha_{3}(\varphi) \Re \mathbf{e} \big[\mathcal{H}_{A}\big]^{2} + \alpha_{3}(\varphi) \Im \mathbf{m} \big[\mathcal{H}_{A}\big]^{2}}$$


DIS 2013, Marseille (France)

Faits marquants



 Démonstration du concept PEPPo de production de positrons polarisés, avec un faisceau initial d'électrons de 8.25 MeV/c.

IPAC 2013 Shangai (China)

Groupe XXX

- SDI / SE / SERM
 - Conception et mise à jour du polarimètre à transmission Compton de PEPPo
- Pôle Accélérateur
 - Modélisation du champ magnétique et de la polarisation de la cible d'analyse du polarimètre
- Analyse des données e+

Backup

Analyse SWOT

Forces

- Groupe jeune avec un recrutement soutenu entre 2007 et 2012 (1 MCF +2 CNRS+1 mutation)
- Nombreuses activités instrumentales et d'analyse au sein du WG EMCal.
- Leadership sur les analyses de corrélations gamma-hadron
- Programme cohérent sur 10 ans.

Faiblesses

- Difficulté récurrente dans le recrutement des étudiants en thèse.
- Groupe en évolution avec une perte de compétences instrumentales.
- Analyse des corrélations plus longue que prévue
- Faible implication sur les upgrades

Opportunités

- Nouvelle responsabilité de coordination au sein de PWG-GA (Gamma et mésons neutres)
- Démarrage d'une nouvelle thèse en septembre 2014. Travail en cours pour la mise en place thèses en cotutelle.

Menaces

- L'implication sur les upgrades et les analyses des saveurs lourdes dépendra de l'état d'avancement des analyses en cours.
- Possibilités de recrutement (postdoc) en soutien aux activités.

Groupe ALICE-Jlab

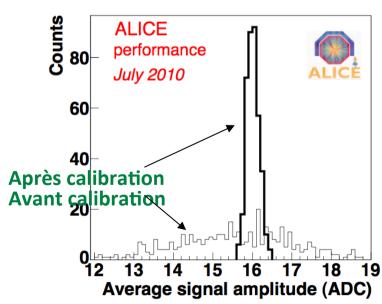
Synthèse des activités au LPSC

Assemblage/tests des Stripmodules en Supermodules (Mécanique, SDI, Electronique)

- ✓ Assemblage, câblage, transport de 8 SM EMCAL + 7 SM DCal
- ✓ Tests et calibration des super-modules (LED, cosmiques)

Construction et mise en service du trigger EMCal de niveau L1 (DAQ, Electronique)

- ✓ Elaboration d'un carte de déclenchement de niveau L1 (FPGA)
- ✓ Développement des codes offline et analyses des performances online.


Simulation et analyse (Physique, Informatique)

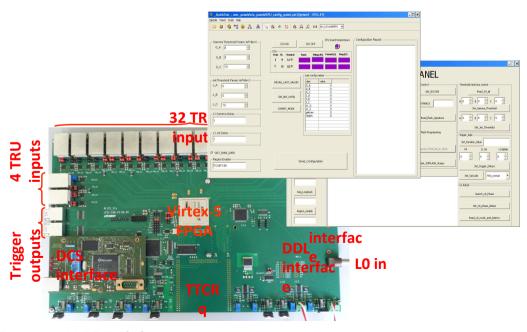
- √ Tests sous faisceau du calorimètre en 2007 et 2010
- ✓ Calibration du calorimètre en cosmigue (Electronique, DAQ et analyse de données)
- √ Analyses des données p+p et Pb+Pb (PICS russie, liban soumis)
- ✓ Développement des outils de reconstruction des pi0 et photons, puis calibration final
- ✓ Analyses de physique en pi0, corrélations pi0/photon-hadron et saveurs lourdes

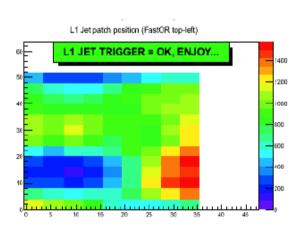
Construction et calibration d'EMCal/DCal

Assemblage et calibration réalisées au LPSC :

- Réception des stripmodules, assemblage, câblage et intégration de l'électronique d'une supermodule + transport des SMs au CERN.
- ✓ Calibration des supermodules en cosmiques
 - Banc de test dédié
 - Développement d'outils de contrôle et d'analyse

Hall ARIANE du LPSC (2012)

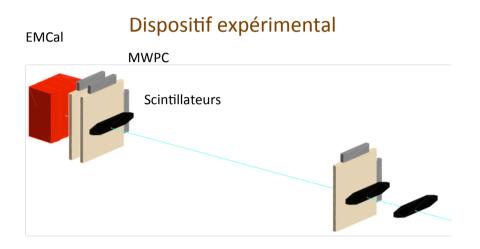

En résumé:


- ✓ Assemblage et calibration de 8 SMs EMCal en 2009-11 puis 7 SMs DCal en 2012-13.
- Calibration avec cosmiques relative à mieux que 3% après 3 itérations
- ✓ Participation à l'intégration dans ALICE

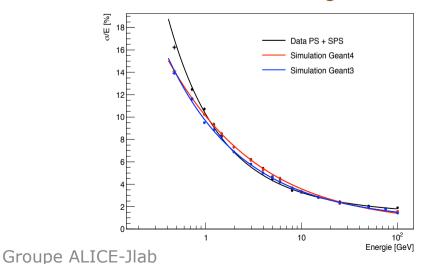
Trigger de niveau L1 d'EMCal

Développement du trigger de niveau L1 (photons et jets de grands pT)

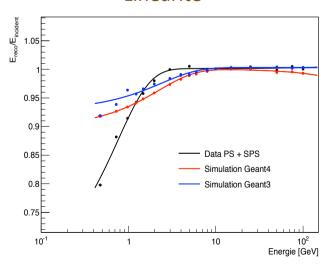
- ✓ Construction de la carte STU (EMCal+DCal) et du contrôle commande
- ✓ Développement offline (simulation complète, reconstruction des données)
- ✓ Mise en œuvre et validation lors des prises de données Pb-Pb et p-Pb
- → Transfert des compétences en cours pour Dcal (LPSC en charge du hardware)


Groupe ALICE-Jlab

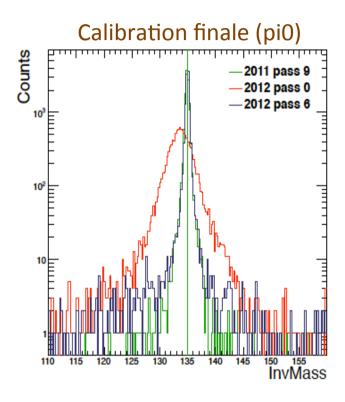
Tests sous faisceaux


Etude des performances du calorimètre EMCal

à l'aide de tests sous faisceaux


- ✓ Tests sous faisceau réalisés en 2011 au CERN
- ✓ Participation au montage expérimental (MWPC)
- ✓ Participation aux analyses des données et de simulations

Résolution en énergie


Linéarité

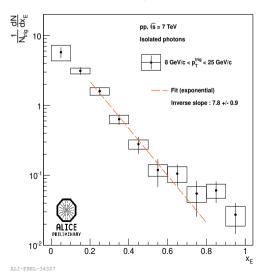
Développements offline

Activités offline autour d'EMCal:

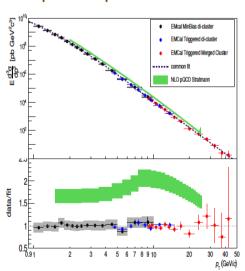
- Validation des données reconstruites
- ✓ Correction en énergie à l'aide des pions neutres
- ✓ Etude sur la clusterization
- → Responsabilité de la gestion du code d'analyse du calorimètre EMCal/Dcal (G. Conesa-Balbastre)

Calibration finale du calorimètre

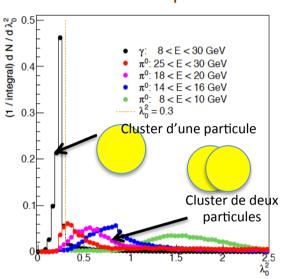
- ✓ Développement de la procédure à l'aide des pions neutres
- ✓ Mise en œuvre complète pour les deux jeux de données de 2011 et 2012


Groupe ALICE-Jlab

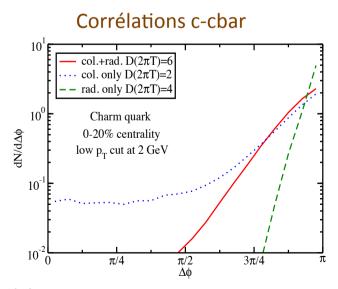
Analyses photons/pi0

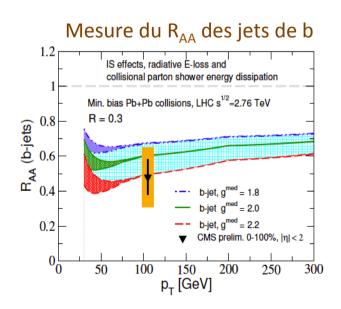

Deux analyses en cours

- ✓ Méthodes d'identification des photons et pi0 à l'aide du calorimètre EMCal
- Mesure de la fonction de fragmentation dans les corrélations photon-hadrons
- Mesure du facteur d'atténuation nucléaire pour les pions neutres


Corrélations photon-hadron

Spectre pion neutre


Cluster shape ID



Saveurs lourdes

Mesure de la perte d'énergie des quarks b dans le QGP :

- ✓ Test de calculs de pQCD et contraintes sur les propriétés du milieu
- ✓ Développements de méthodes d'identification de B et de jets de b
- ✓ Mesure de la fonction de fragmentation du b et de sa modification par le milieu
- ✓ Mesure des corrélations gamma-D/B ou gamma-jets de b (étude de faisabilité)
- → Mise en œuvre sur les données du run 1 et 2 puis statistique intéressante après 2018

Perspectives des runs 2 & 3

LS1: Installation 5 modules TRD, 8 DCal, 1 PHOS + upgrade électronique

(TPC, TRD, EMCal, PHOS)

2015 : pp @ 13 TeV (MB & rare) ; même NN L que Pb-Pb

Pb-Pb @ 5,1-5,5 TeV (MB); $L_{int} = 0,5$ nb⁻¹

2016: pp @ 13–14 TeV (MB & rare)

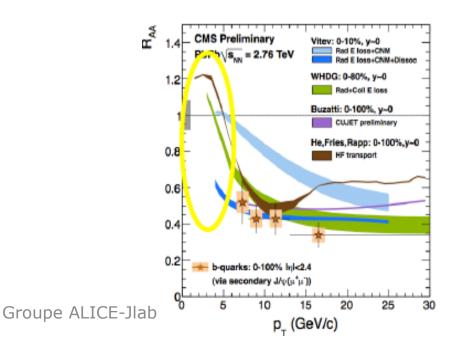
Pb-Pb @ 5,1-5,5 TeV (MB); $L_{int} = 0.5 \text{ nb}^{-1}$

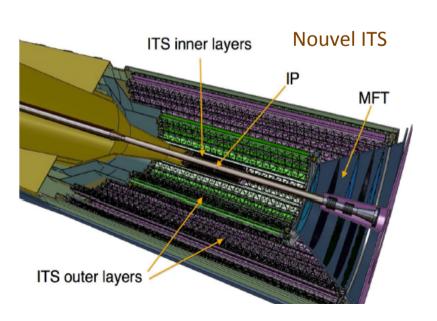
2017: pp @ 13-14 et 5,1-5,5 TeV (MB & rare); ; même NN L que Pb-Pb

p-Pb @ 5.1 ou 8 TeV (MB & rare); L_{int} x 10

LS2: Upgrade ITS & TPC, Muon, MFT, DAQ & HLT, GRID

> 2018 :pp @ 14 TeV (MB & rare)

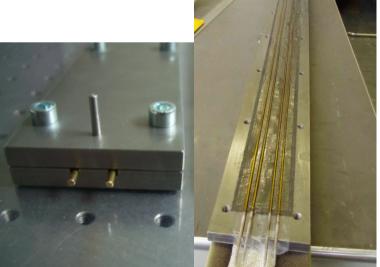

Pb-Pb @ 5,5 TeV (MB & rare); $L_{int} = 10 \text{ nb}^{-1}$


p-Pb ou AA ou pp @ ? TeV (MB & rare); L_{int} x10

Upgrade d'ALICE (après LS2)

Stratégie définie par la collaboration :

- ✓ Physique des saveurs lourdes c et b (hadrons et quarkonia) et identification des particules dans les corrélations gamma/jet-jet à bas pT, di-électrons à basse masse, ...
- → Amélioration de l'électronique d'acquisition (50 kHz en Pb-Pb x100) :
- → Amélioration du système de vertexing et de tracking à bas pT (ITS, MFT)
- ✓ Implications du LPSC : Fonctionnement du calorimètre EMCal/Dcal et Implications dans la physique des saveurs lourdes avec une contribution technique à l'ITS (à préciser)


Implication du service mécanique (SERM)

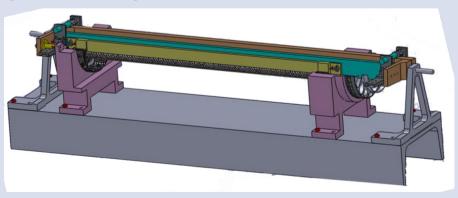
- Entrée dans la collaboration au printemps 2013 (WP9 Mechanics & Cooling)
- Réalisation de 4 moules pour le moulage de précision de pièces en composite:
 - des "cooling panel" et des "space frames » internes et externes (jusqu'à 1540 mm x 60 mm x 34 mm)
- 4 moules de qualification ont été réalisés

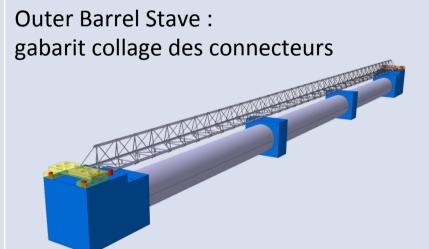
ETP 1 IR (5%) – 1 Al+ 1 T (5%) : Atelier: 54 J

Moule pour space frame (Inner Barrel)

Moule pour cooling panel 1540*60 Ep 0.23 (Outer Barrel)


New ALICE ITS (Inner Tracking System) Perspectives 2015




Pour process de production – toujours pas confirmé!

Intérêt commun / ATLAS ITK

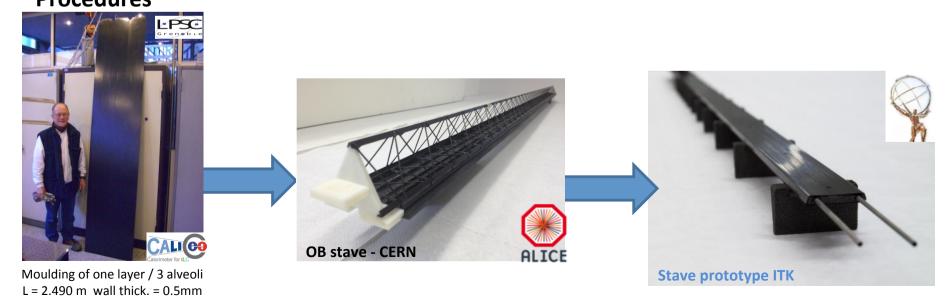
Service mécanique: Impliqué dans IBL + expérience structures composites CALICE (Calorimètre ILD) – Implication amont dans le projet d'upgrade du détecteur pixel d'ATLAS

Technologies

Structures Composites / choix

(enroulement filamentaire, prepreg, carbon fleece, fibre de verre, polyimide...)

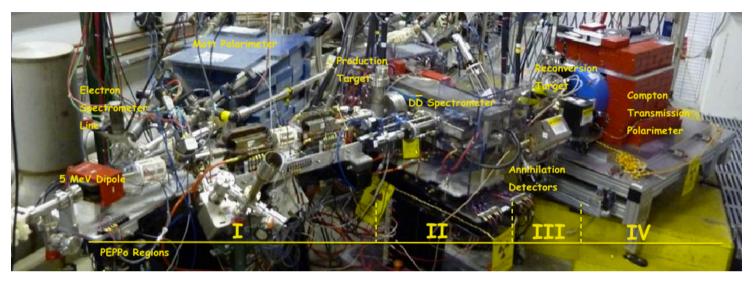
Process de production

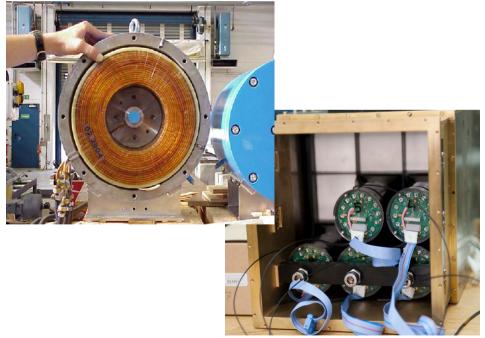

Thermalisation

Cooling périphérique

Outils (moules, gabarits) et intégration

Programme de tests


Caractérisations mécaniques et thermiques Procédures



Contributions techniques

SERM / SDI / SE

 Conception et mise à jour du polarimètre à transmission Compton de PEPPo

SA

 Modélisation du champ magnétique et de la polarisation de la cible d'analyse du polarimètre