

Nuclear Energy Research in Cambridge

Dr Eugene Shwageraus

Department of Engineering

SERPENT / Multi-physics Workshop, LPSC Grenoble

26-27 February 2015

Nuclear Energy Education in Cambridge

□ Undergraduate

- Introduction to NE, Nuclear Materials, Reactor Engineering, Advanced Systems/Fusion, Medical Physics
- > Over 150 students took NE introductory module last year
- 10 20 fourth-year Engineering Projects were offered

□ Graduate

- ➤ NE MPhil one year full time masters course
- 15 PhD students in Engineering/Physics, Waste/Materials and Business/Policy
- Centre for Doctoral Training (CDT) jointly with OU and ICL

Nuclear Energy Research Community in Cambridge

- □ Cambridge Nuclear Energy Centre
- Coordinates cross-discipline collaboration
- About 15 academics are actively engaged in NE related research
 - Department of Engineering: Physics and design of advanced systems
 - Department of Earth Sciences and Department of Materials Science
 & Metallurgy: Waste and decommissioning, high temperature
 reactor materials, fuel reprocessing, fracture mechanics and steels
 - Judge Business School: Economics, technology policy

MPhil in Nuclear Energy - Overview

- □ Taught 1 year MPhil in Nuclear Energy (runs October August each year)
 - > 20 -25 top students from around the world each year
 - 5 core nuclear engineering modules
 - Nuclear policy module
 - ➢ Elective modules from Engineering, Materials Science, Chemical Engineering, Physics and Judge Business School
 - 4 months project on either:
 - Cambridge University or
 - Industry partner research topic

Nuclear Energy MPhil - Core Scope

Core Topic	Scope		
Reactor Physics	Core physics & shielding – steady state power & shapes, depletion control elements & use of poisons, core kinetics & system control.		
Reactor Engineering & Heat Transfer	Coolant types, thermal cycles, heat transfer, thermal limits – reactor systems, their optimisation and operating characteristics including normal operation & how to address main types of fault condition.		
Fuel Cycle, Waste & Decommissioning	Whole fuel cycle: mining to waste & how waste is managed, decommissioning principles.		
Fuel & Reactor Materials	Fuel and reactor materials – including selection, safety and life issues – radiation behaviour & damage, structural integrity & fracture mechanics, EAC.		
Safety & Advanced Systems	Safety philosophies, impact on design, justification approaches, control & reliability, advanced systems including Gen IV, Thorium & Fusion		
Nuclear Technology Policy	Energy studies & climate change, economics of energy, nuclear politics, proliferation & physical security.		

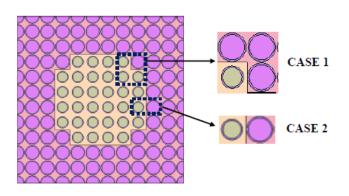
MPhil – Breadth & Depth of NE Education

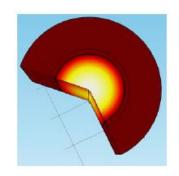
□ Breadth:

- Teaching a wide range of nuclear engineering and policy topics
- Visits & experiments: Sizewell B, Culham Fusion R&D lab, Research Reactor
- External lectures by leading figures from the nuclear industry

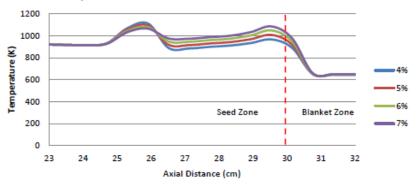
□ Depth:

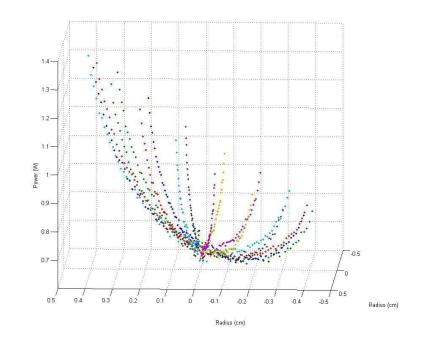
- Choice of optional/elective courses
- Long research project and dissertation
- Projects from industry on a real issue with supervision by industry

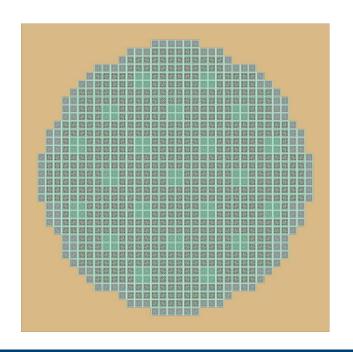


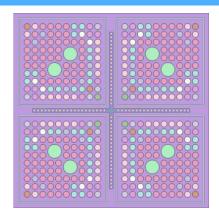

Examples of MPhil Projects

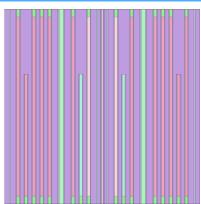
Title	Student	
WIMS/ PANTHER model for a start-up EPR Core	Jinfeng LI	
Economics of SMRs – design options	Inkar Yertayeva	
Managing power peaking at fissile-fertile interface in HC LWRs	Cuicai Dong	
Ethical Principles & Values in Nuclear Safety	Annie Bonaccorso	
Accelerator Production of medical isotopes	Tianyi Wang	
Commercial Nuclear Marine Core Design	Hao Sun	
Electron Beam welds in nuclear pressure-vessels	Chris Duffy	
Waste glass dissolution modelling	Rui Guo	
Modelling of Fast Reactor transients	Xinyu Zhao	
Energy group structure optimisation for fusion reactor applications	Michael Fleming	



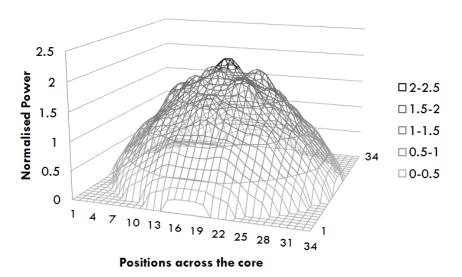

Seed-blanket interface multi-physics modelling

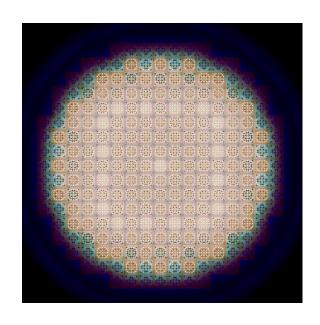

Temperature Distribution with 4 cm Extra Seed Zone



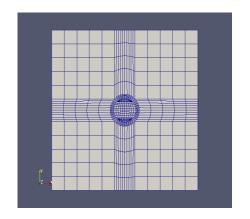


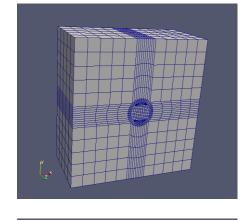
□ ABWR modelling


- Serpent XS + PANTHER
- Thermal feedbacks included

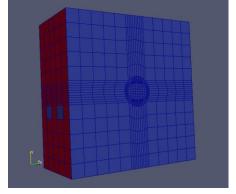


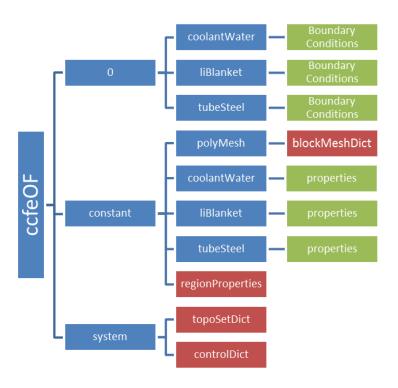
Core Radial Power Distribution -BOC

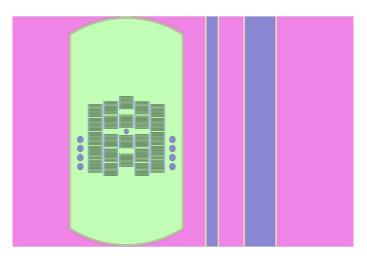


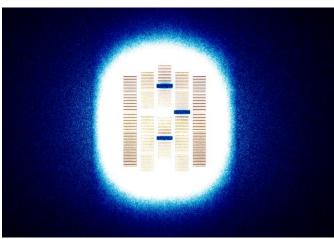

- □ EPR startup core modelling
 - **➤ WIMS/Serpent XS + PANTHER**
 - > Thermal feedbacks included

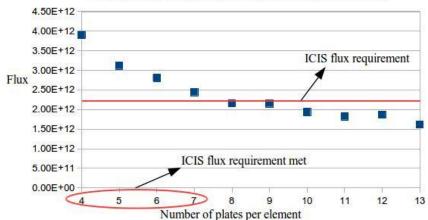

		This work	ONR report	Difference
Critical Boron Concentration (ppm)		1029	1026	0.3 %
Total Heat Flux Hot Channel Factor		2.69	2.82	-4.8 %
Hot Channel Factor		1.63	1.61	1.2 %
Doppler Coefficient (pcm/K)	ВОС	-2.90	-2.93	1.0 %
	EOC	-3.17	-3.21	1.2 %
MTC (pcm/K)	ВОС	-13.7	-13.0	5.4 %
	EOC	-64.2	-60.6	5.9 %
Boron Worth (pcm/ppm)	ВОС	-9.1	-9.3	2.2 %
	EOC	-9.4	-9.7	3.1 %




■ Multi-physics modelling of fusion breeding blankets



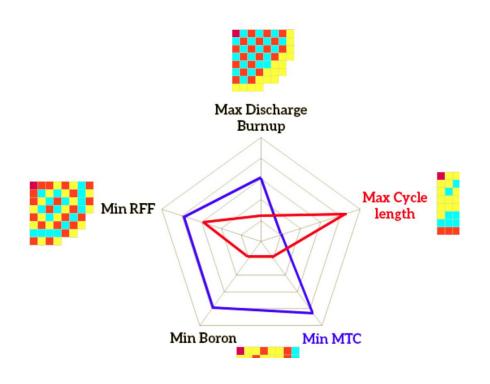



□ HEU to LEU fuel conversion of CONSORT reactor

Thermal neutron flux (ICIS) Vs Number of plates per element

High Conversion LWRs Modelling

- ☐ Highly heterogeneous cores
- □ Analysis methods
 - **➤** Monte Carlo XS + nodal diffusion codes for transients
 - Coupled Monte Carlo multi-physics
 - Accelerated convergence and numerical stability
 - > SP3 option in DYN3D
 - **→** 3D MoC WIMS/CACTUS
- □ Dynamic modelling of fuel cycle systems


Molten Salt (and Molten Salt-Cooled) Reactors

- Real potential to compete with LWRs economically
 - High temperatures for non-power applications
 - > Hybrid systems to complement fossil fuels and renewables
- Design space remains largely unexplored
- Fast/thermal, Pebbles/blocks, SMR/large
- Ongoing collaboration with MIT-UCB-UW
- Joint NEUP proposal submitted

LWR Core Design

- □ Stochastic fuel loading optimisation algorithms
- □ Advanced PWR/BWRs with exotic fuels
 - > I2S-PWR project
 - Accident tolerant fuels
 - ➤ Thorium/Pu/MA
- □ Transients and steady state
- □ WIMS/PANTHER/DYN3D
- □ PARCS-TRACE

Fast Reactors

- Once-through Fast Reactors (no reprocessing)
 - > A.K.A Traveling-Wave, Breed & Burn, USFR etc.
- □ Passive safety (DHR and reactivity control)
 - High leakage "Pancake" shape is no longer needed
 - Cheaper, more neutronically efficient core
- Core disruptive accidents
 - Tightly coupled problems OpenFOAM ?
- □ Thorium fuel cycle for Fast Reactors
 - > EPSRC UK India Civil Nuclear Collaboration Proposal submitted

Thank you

