

Workshop SERPENT

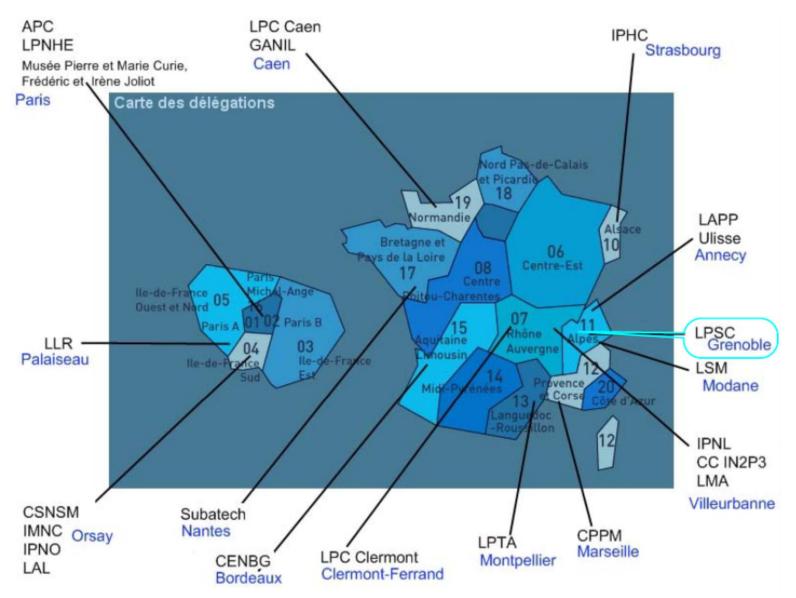
Presentation of the Reactor Physics Group

The IN2P3 Context

IN2P3 is one of the 10 Institutes of the CNRS

- Created and operated as an Institute since 1971
- Some numbers
 - 2500 permanent staffs + 400 PhD students and 300 Postdocs
 - 900 researchers and 1600 Technical staff (strong technical support)
 - Annual Budget
 - 190 M€, 20 M€ external resources (8.5 from Technology Transfer)

Mission


- Basic research in nuclear physics, particle physics and astroparticle physics
 - Coordinates programs in these fields for the French academic world (CNRS, Universities), in partnership with the CEA (Atomic Energy Agency)
 - Coordination of 2 Europe Research Areas-NETs: ASPERA and NUPNET

Organization

- 25 laboratories (most of them operated jointly by CNRS and Universities) and platforms organized in a national network
- 9 associated international laboratories (in particular with Asia)
- 1 "GIP" (semi-public): microelectronics and Microsystems for industry
- Active/leader in 40 active international projects

IN2P3 laboratories in France

The location

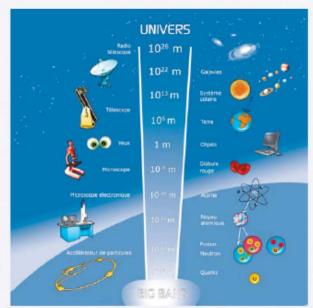
The LPSC: generalities

The laboratory

- Operating agencies: CNRS and Universities of Grenoble (UJF, INPG)
 - LPSC part of the network of laboratories of IN2P3
- About 225 people
 - 70 Physicists, 100 Technical staffs, 35 PhD students, 20 Postdoc, ...
 - More than 60 students trained in research each year
- Budget 3-4 M€/year (not including salaries)
 - 2-3 M€ for the scientific projects
 - ≈ 75 % from CNRS/IN2P3
- About 25 projects underway (experiments, theory, and technology)
 - ANR, Europe (FP6&7) and International
 - World level collaborations

The site

- 5 hectares of land, 9 buildings (total surface 20,000 m²)
- Several assembly Halls and facilities
 - Accelerator, Tier 3, Molten salt loop ...
- Platforms for research and academic training
 - Nuclear energy, plasma and ion beams, ...



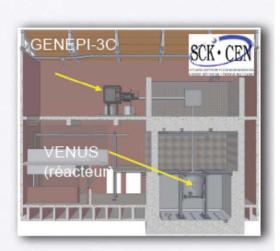
Research at the LPSC

Physics of the 2 infinities (IN2P3): infinitely small to infinitely large ... as well as cross-disciplinary and spin off

Physics cases

- 1 Quarks, leptons and fundamental interactions
- 2 Astroparticles and cosmology
- 3 Hadronic and nuclear Physics
- 4 Theory and phenomenology
- 5 Physics of nuclear reactors
- 6 Accelerator and Ion Sources
- 7 Interdisciplinary: Medical and Plasma
 - Teaching and Training, Technology Transfer and Scientific Information

Reactor Physics Group


Scientific goals

- Innovative reactors for energy production with reduced waste production and optimization of the resources (Th/U cycle)
- Burning of minor actinides; accelerators driven subcritical reactors (ADS)

- GUINEVERE project (at Mol, Belgium)
 - Research reactor (VENUS)
 - External source of neutrons from accelerator (GENEPI-3C, Grenoble)
- Neutron facilities (PEREN, GELINA, ILL)
 - Key cross section measurements
- Molten salt concept (FFFER, Grenoble loop)
- Simulations and scenarios

Reactor Physics Group

- The Reactor Physics Group was created in 1994
- Group manager: A. Billebaud
- Group members

9	uni	iversity	/ researc	hers:
---	-----	----------	-----------	-------

A.Bidaud (MCF INPG)

N.Capellan(MCF INPG)

G.Kessedjian(MCF INPG)

E.Liatard (PR UJF)

O.Méplan (MCF UJF)

E.Merle-Lucotte (PR INPG)

A.Nuttin (MCF INPG)

P.Rubiolo (PR INPG)

C.Sage (MCF INPG)

4 CNRS researchers:

A.Billebaud (DR)

S.Chabod (CR)

V.Ghetta (CR)

D.Heuer (DR)

1 Post-doc:

M. Aufiero

2 PhD students:

A. Chebboubi (3A)

A. Laureau (3A)

1 External collaborator:

M.Allibert

Reactor Physics Group: research teams

Modeling, Analysis and Scenario (MAP): P. Rubiolo

- Development of multi-physics / multi-scale tools for reactor physics studies
- Analysis of advanced reactor systems and the associated energy scenario
- Evaluation of nuclear perspectives including economics aspects

Experiments for Reactor pour les Réacteurs: G. Kessedjian

- Nuclear data for nuclear fuel cycle
- Reactor experiments
- High temperature fluids

MSFR system: E. Merle-Lucotte

- Physical studies for reactor design
- Development of safety methods for liquid nuclear fuel reactors
- Development of the MSFR reactor concept

Reactor Physics Group: research areas

Accelerator Driven Systems (ADS)

- GUINEVERE
- FREYA
- Development of more accurate reactivity monitoring system

→ Towards an ADS demonstrator

Solid fuel + Thorium

- Systems studies
- Scenarios

Simulation tools (MURE, REM...)

Multi-physics coupling

Safety methodology and studies

Economic scenario

Molten Salt loop (FFFER)

Molten Salts Reactors

System studies

(MSFR, Thorium)

Scenarios

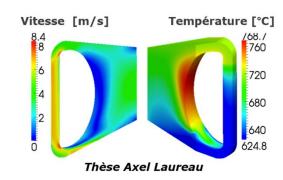
 Molten salt forced convection loop with a bubbling system

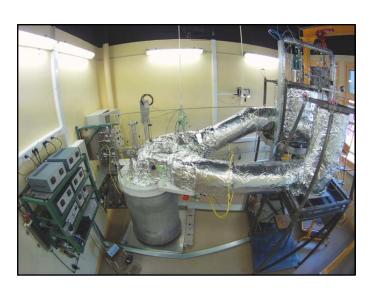
Nuclear data for fuel cycle

- Nuclear data measurements
- Statistic analyses (covariance)
- Uncertainty propagation

Recent R&D projects/results

Solid fuel / Thorium / Scenarios


- Thorium fuel performance (heavy/light water reactors):
- Energy scenario studies (tools: CLASS & MURE, collaboration with IN2P3, economists)


Molten Salt Fast Reactor (MSFR)

- Design and safety studies: system code
- Safety methodology
- Multi-physics coupling
- Projects : EVOL/CLEF/ SAMOFAR
- Molten Salt loop (FFFER)

Nuclear data for fuel cycle

- Fission products yields measurements at ILL
- Lohengrin experiment: magnetic spectrometer
- Sensitity studies to nuclear data uncertainties
- Uncertainties propagation (SERPENT)

Workshop SERPENT

Grenoble INP – Grenoble Institute of Technology

Nuclear Education and Training at Grenoble

Grenoble INP is a federation of 6 engineering schools

Phelma: "Physics, Applied Physics, Electronics and Materials Science"

Ense3: "Energy, Water and Environmental Sciences"

Ensimag: "Information Management Sciences"

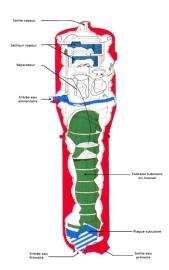
Esisar: "Advanced Systems and Networks"

Génie Industriel: "Industrial Engineering"

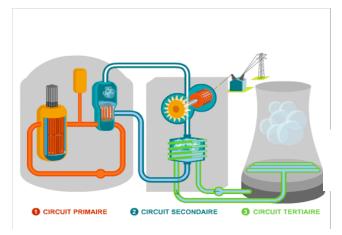
Pagora: "Paper science, Print Media and Biomaterials"

+ 35 research laboratories

Students are admitted two years after their high school graduation via competitive exams for entry to Grandes Ecoles, via University's degrees, or an in-house Preparatory Course


5000 students/year among them 3500 future engineers
Around 1600 diplomas delivered per year

Grenoble



Nuclear Education and Training at Grenoble

- Two Engineering Programs:
- ✓ Reactor Physics and Nuclear Engineering (GEN PHELMA): ~50 students per year (physics and microscopic sciences, neutronics, materials, thermal-hydraulics, nuclear reactors, safety, simulations)
- ✓ Nuclear Energy Engineering (IEN ENSE3): ~25 students per year (thermal-hydraulics, electrical engineering, automation, nuclear sciences)

- Two Masters of Science (PHELMA):
 - ✓ Master « Material Sciences for Nuclear Energy » (15-25 students in English)
 - ✓ Master « Energy Physics » (15-25 students in French)

- PhD programs + Leader of the PhD Track "Sustainable Nuclear & Converging Energies" of the KIC InnoEnergy
- International bachelor in Nuclear Energy (PHELMA) 10-20 students per year from North China Electric Power University

Nuclear Education and Training at Grenoble

 Nuclear Instrumentation - PLATIN (Radiation detection, nuclear electronics)

 α spectroscopy based on Si junction, γ spectroscopy based on Ge junction, Ionization and proportional chamber, Neutron detection, γ - γ coincidences, Neutronic activation, Detection statistics and analysis

• Practice of PC-based simulator for PWR (PHELMA – UJF / based at LPSC)

• Access to a **Full Scale Simulator** (for the training of power plants EdF operators)

Welcome to Grenoble!

