Storage rings for hadron Electric Dipolar Moments measurements

Jean-Marie De Conto – groupe accélérateurs

The basic idea: build up of a vertical polarisation

For **all** EDM experiments (neutron, proton, atoms, ...): Interaction of \vec{d} with electric field \vec{E} For charged particles: apply electric field in a storage ring:

build-up of vertical polarization $s_{\perp} \propto |d|$

In fact, it is much more complicated!: build up must be coherent (resonant devices must be added)

Some numbers

- Very long Spin Coherence Time (SCT: 1000 seconds)
- High precision storage ring (field homogeneity, alignment, imperfections) filled with 4.10¹⁰ particles
- Small machine (~1 GeV)
- Example: beam position to be measured up to 2 nm is a challenge but remains realistic (20nm achievable)
- Very high electrostatic fields (>10MV/m)
- Polarized beams (80%) and polarimetry
- Systematic errors hunting.

$$\sigma_{\text{stat}} \approx \frac{1}{\sqrt{Nf}\tau PAE} \Rightarrow \sigma_{\text{stat}}(1 \text{ year}) = 10^{-29} \, e \cdot \text{cm}$$

challenge: get σ_{sys} to the same level

Spin precession in a storage ring

Equation for spin motion of relativistic particles in storage rings for $\vec{\beta} \cdot \vec{B} = \vec{\beta} \cdot \vec{E} = 0$.

The spin precession relative to the momentum direction is given by:

First order spin tune $v_s = \gamma G$

Protons: G>0 B=0 and $\gamma_{magic} = \sqrt{\frac{G+1}{G}}$ - circular electrostatic machine

Deuterons: $G < 0 \rightarrow B$ and E fields \rightarrow dogbone machine

A magic storage ring for protons (electrostatic), deuterons, and helium-3

particle	p (GeV/c)	E (MV/m)	B (T)
proton	0.701	16.789	0.000
deuteron	1.000	-3.983	0.160
³ He	1.285	17.158	-0.051

One machine with $r \sim 30 \text{ m}$

Brookhaven proposal for protons: two clockwise beams in an electrostatic ring

d-EDM ring for different energies

8

Example: spin coherence time

- SCT ~1000 seconds (10⁹ turns)
- The spin tune must be the same for all particles→minimization of aberrations
- $\delta_{\nu s} = F_{non-lin}\left(x, L_{traj}, \frac{\Delta E}{E_0}, \vec{E}...\right)$ is studied carefully (high accuracy calculations, theoretical models, long term simulations)
- The accurate measurement of the average spin tune is a tool for systematic errors characterization and hunting

mesures@COSY@Jülich_{io}

Acknowledgments: Andreas Lehrach, Jörg Pretz, Yuri Senichev...