Proton flux analysis and solar modulation with the AMS-02 detector and neutron monitors.

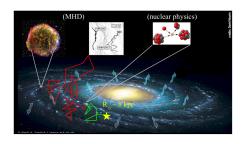
Alexandre Ghelfi

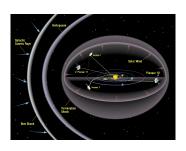
LPSC, Grenoble

21 april 2015

Introduction & Motivations

Galactic cosmic rays (GCR) and solar modulation




Propagation of CRs in the Galaxy

- Synthesis and acceleration.
- Transport in the Galaxy (\approx 20 Myr).
 - Diffusion on magnetic fields.
 - Energy gains/losses.
 - Nuclear interactions.

Introduction & Motivations

Galactic cosmic rays (GCR) and solar modulation

Propagation of CRs in the Galaxy

- Synthesis and acceleration.
- Transport in the Galaxy (≈20 Myr).
 - Diffusion on magnetic fields.
 - Energy gains/losses.
 - Nuclear interactions.

Solar modulation

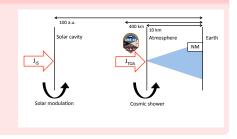
- CR interaction with the solar plasma.
- Modulation correlated with the Sun activity (sunspots).
- Time dependent (11 yr cycle).

Introduction & Motivations

Galactic cosmic rays (GCR) and solar modulation

Motivations

Galactic scale:


- CR sources (abundances, spectrum).
- CR transport.
- Dark matter.

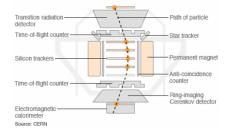
Local scale:

- Interstellar fluxes (J_{IS}) needed for GCR data interpretations.
- Understand solar physics and transport in solar cavity.

Which data can be used?

- Top of atmosphere (TOA) CR experiments.
 - ► **AMS-02**, PAMELA, BESS.
- Count rate from ground based experiments.
 - Neutron monitors (NM), muon monitors.

Outline

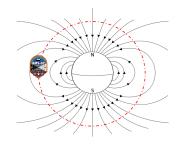

- Introduction & Motivations.
- AMS-02 proton analysis.
 - What is AMS-02?
 - From count rates to flux.
 - Proton selection.
 - Unfolding.
 - Caracterisation of the proton flux.
- Solar modulation study.
 - What is solar modulation?
 - The force field model.
 - What is a neutron monitor?
 - Reconstruction of solar modulation levels.
- Conclusion & Perspectives.

4 / 22

What is AMS-02?

- On the ISS since may 2011.
 - Continuous data taking.
 - Large statistics (3 × 10⁸ protons detected over 30 months).
- Composed of 6 sub-detectors.
 - Multi-purpose detector (from H to Fe + leptons).
 - Redundant measurements of detected particle's properties.
- Core: permanent magnet and silicon tracker.
 - Identify the sign of the particle.
 - Measure magnetic rigidity $R = \frac{p}{Z} = Br_L$

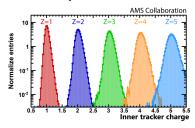
The Alpha Magnetic Spectrometer (AMS-02)



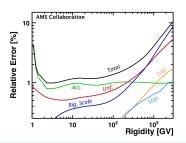
- Very good identification of particles.
- Large acceptance + long duration experiment: huge statistics.

From count rates to flux

$$J_i = \frac{N_i}{Acc_i \times \epsilon_i^{trigger} \times T_i \times \Delta R_i}$$


- i: rigidity bin $[R_i; R_i + \Delta R_i]$.
- N_i : number of particle detected in rigidity bin i.
- Acc_i : effective acceptance (estimated from MC simulation).
- $\epsilon_i^{trigger}$: trigger efficiency (estimated from data).
- T_i: exposure time (from data).

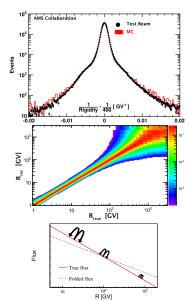
Acceptance from MC, the rest from data.


Proton selection

- Selection criteria:
 - ▶ Downgoing particles: $\beta > 0.3$.
 - ► Charged +1 particles: |Z| < 1.4 and Z > 0.
 - Particle above the geomagnetic cutoff: $R > 1.4 \times R_{cut}$.
 - ► Clear signal: $N_{track} > 0$ and 4/4 ToF layers hit.

Clean selection of proton events.

- Systematic uncertainties.
 - Estimated from MC simulation and in-flight data.
 - ► Syst (4% @1TV) > Stat (0.5% @1TV).

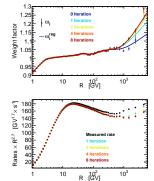


Energy resolution is the dominant source of systematics at high energy.

Unfolding - Problematic

- Finite energy resolution.
 - $ightharpoonup R_{rec} \neq R_{true}$
- Migration matrix (from MC simulation): migration probability.
 - Migration depends on rigidity.
 - Maximum detectable rigidity MDR = 2 TV ($\Delta R = 100\%$).
- Illustration on a power-law flux.
 - Flux distorsion (change of spectral index).
 - Important consequences for data interpretation.

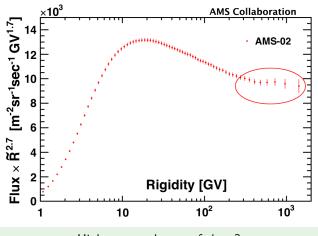
Given AMS-02 data precision, migration has to be corrected


Unfolding - Correction from finite energy resolution [Ghelfi, Proceeding CRISM 2014]

Algorithm:

- ▶ X_j : Unfolded rate at the j^{th} iteration.
- ► Y_i: Folded rate.
- $ightharpoonup Y_{mes}$: measured rate.
- ω_j: weight factor.
- ω_j^{reg} : regularised weight factor.

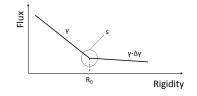
$$\begin{array}{rcl} Y_{mes} & = & M \cdot X_{true} \\ Y_j & = & M \cdot X_j \\ \omega_j & = & \frac{Y_j}{X_j} \\ \omega_j^{reg} & = & Spline(\omega_j) \\ X_{j+1} & = & \frac{Y_{mes}}{\omega_j^{reg}} \end{array}$$


Regularisation: Avoid propagation of statistical fluctuations in the process.

- Fast and robust convergence.
- Validated on simulated data.
- Official method in AMS-02 analysis.

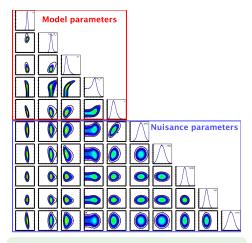
Proton flux

LPSC analysis selected, PRL publication accepted.


High energy change of slope?

Characterisation of the proton flux

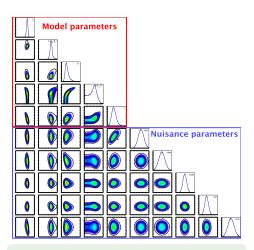
Motivations


- ► Hint of a break around 200 GV [Adriani et al, 2011], [Yoon et al, 2011].
- ▶ Structure at high energy (source spectrum, transport...?).
- Fit a double power-law with smooth transition.

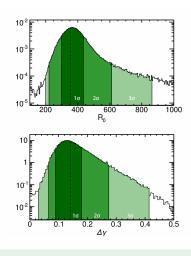
$$J(R) = C \times R^{-\gamma} \left[1 + \left(\frac{R}{R_0} \right)^{\Delta \gamma / s} \right]^s$$

- Estimation of non-gaussian parameters errors (needed for testing hypothesis).
 - Profile likelihood.
 - Markov chain Monte Carlo (MCMC).

Characterisation of the proton flux - Analysis

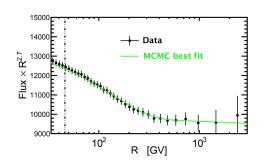

- Access PDFs (1D and 2D).
- Asymmetric errors.

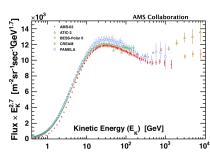
- MCMC principle.
 - Based on the Bayes theorem.


$$\underbrace{P(\vec{\theta}|data)}_{PDFs} \propto \underbrace{P(data|\vec{\theta})}_{Likelihood} \times \underbrace{P(\vec{\theta})}_{Prior}$$

- MCMC: Intelligent sampling of the likelihood and natural marginalisation.
- Systematic uncertainties ([SOS 2014, W. Verkeke]).
 - ► Goal: Propagate systematics from analysis into the fit.
 - Each source of systematics described by a model and some parameters (nuisance parameters NP) constrained by external measurement (calibration).

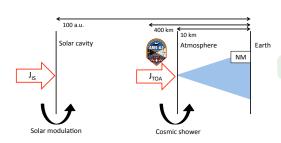
Caracterisation of the proton flux - Analysis




- $R_0 = 353^{+82}_{-53}$. $\Delta \gamma = 0.151^{+0.037}_{-0.048}$.

"No break" hypothesis rejected at 3 sigma.

Characterisation of the proton flux - Results

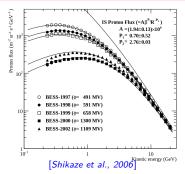

- MCMC approach: validation of the official fit (profile likelihood).
- ullet Break origin: source spectrum, transport...? \Rightarrow Other CR fluxes needed!

Outline

- Introduction & Motivations.
- AMS-02 proton analysis.
 - ▶ What is AMS-02?
 - From count rates to flux.
 - Proton selection.
 - Unfolding.
 - Caracterisation of the proton flux.
- Solar modulation study.
 - What is solar modulation?
 - The force field model.
 - What is a neutron monitor?
 - Reconstruction of solar modulation levels.
- Conclusion & Perspectives.

What is solar modulation?

- Interaction between solar plasma and GCR particles (MHD).
- Flux variations correlated with solar activity (11 years cycle).
- Affect all charged CR data at low energy.
- Link between J_{IS} and J_{TOA} .



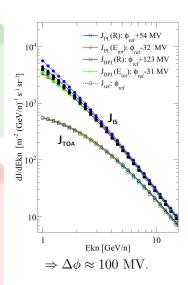
 J_{IS} not directly measured.

The Force field model [Gleeson and Axford, 1967]

- Simple link between J_{IS} and J_{TOA} .
- One parameter $\phi(t)$, typical values between 200 MV and 1500 MV.

$$\begin{cases} E_{TOA} &= E_{IS} - Z\phi, \\ J_{TOA} \left(E_{TOA} \right) &= \frac{E_{TOA}^2 - m^2}{(E_{TOA} + Z\phi)^2 - m^2} \times J_{IS} \left(E_{TOA} + Z\phi \right). \end{cases}$$

- Reproduce well TOA data.
- Still widely used nowdays. $\Rightarrow \phi$ from TOA fit.


How do we reconstruct solar modulation levels? - TOA analysis

Methodology

- Assume a IS flux parametrisation.
- Choose a set of TOA data (over m time periods) → CRDB (lpsc.in2p3.fr/cosmic-rays-db).
- Fit **one** IS flux and m solar modulation parameters on the TOA data.

Issues

- J_{IS} and solar modulation ϕ highly degenerated.
- Solutions:
 - ⇒ Make simultaneous fit for different species and different time periods.
 - ⇒ Use other tracers of solar modulation.

What is a neutron monitor? [Simpson, Space Sci. Rev. 93 (2000) 11-32]

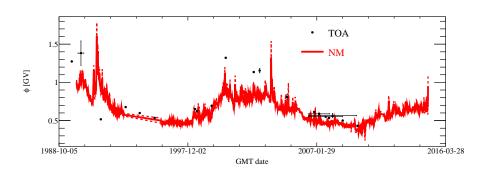
- Simple detectors.
 - Sensitive to neutrons from cosmic showers.
 - Continuous data taking (from 1960).
- Worldwide network.
 - Measurements at different R_c.
- Independant measurement of $\phi(t)$.
- Very fine time resolution (\approx min).

How do we reconstruct solar modulation levels? - NM analysis

Methodology

$$N(\vec{r},t) = \int_{R_c}^{\infty} \sum_{i=CRs} \mathcal{Y}_i(R,h) \frac{dJ_i^{\text{TOA}}}{dR} (R,\phi(t)) dR.$$

Link between J_{IS} and J_{TOA} similar to TOA analysis.


- Link between J_{IS} and J_{TOA} : Force field model.
- Link between J_{TOA} and NM count rates: **Yield function** \mathcal{Y} .
 - Modelisation of the earth atmosphere and the detector.

Issues

- Integrated measurement (energy and species).
- Large systematics[Maurin et al].
- Solution: Huge network of NM.

One $\phi(t)$ for each stations.

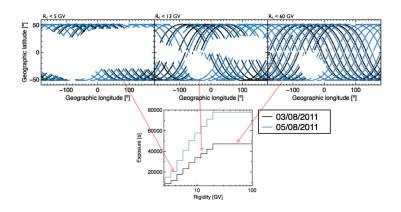
How do we reconstruct solar modulation levels? - NM analysis

Ongoing work:

- ullet Compare $\phi(t)$ for different NM stations, yield functions, J_{IS} .
- Provide reference phi values for the CR community.
- [Ghelfi et al]in preparation.

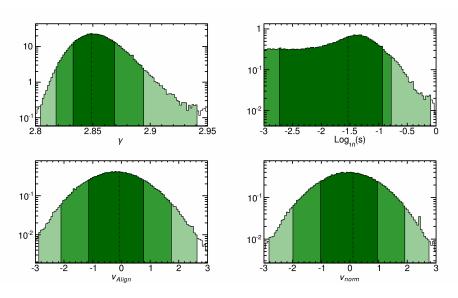
Conclusion & Perspectives

Conclusion

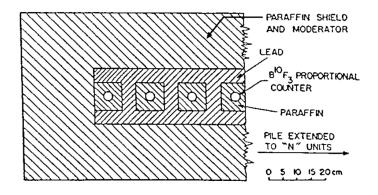

- AMS-02.
 - Involved in the Grenoble proton analysis (selected for proton flux publication).
 - Unfolding method selected as the official one.
- Solar modulation.
 - Analysis chain developped and tested for $\phi(t)$ reconstruction.
 - Coherent $\phi(t)$ over 50 years.

Perspectives

- Solar modulation.
 - lacksquare $\phi(t)$ analysis with AMS-02 data (H and He analysis already done in the group).
- AMS-02.
 - ▶ Isotopic separation for the Lithium (Lithium analysis ongoing in the group).


Back-up slides.

Exposure time.


Back-up slides.

Fit parameters.

Back-up slides.

Exposure time.

