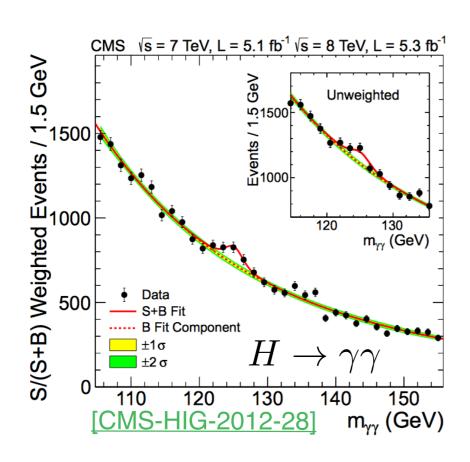
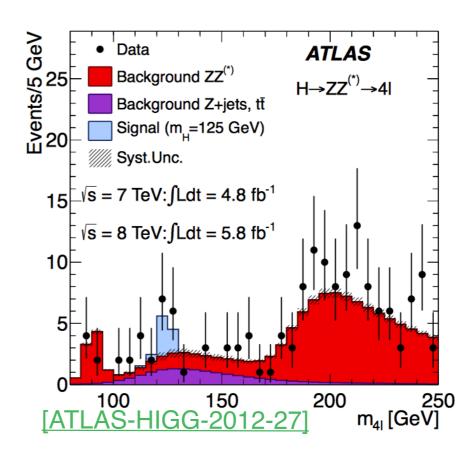
Constraining new physics from Higgs measurements

Signal strengths, Global fits, Lilith & Applications


Jérémy Bernon


LPSC Grenoble

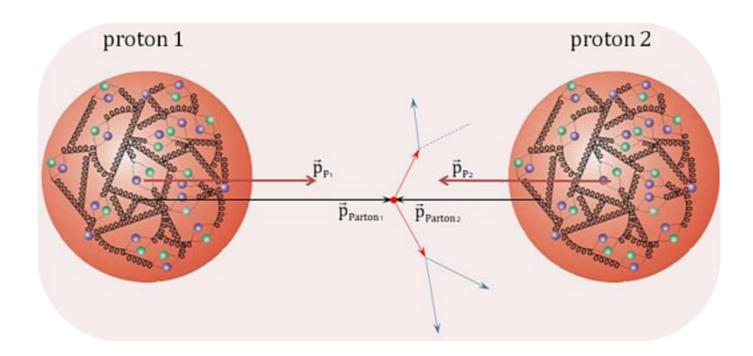
Motivations

A new particle was discovered at the LHC!

It really seems to « walk and quack » like a Standard Model (SM) Higgs boson

Could it really be it?

Higgs at the LHC

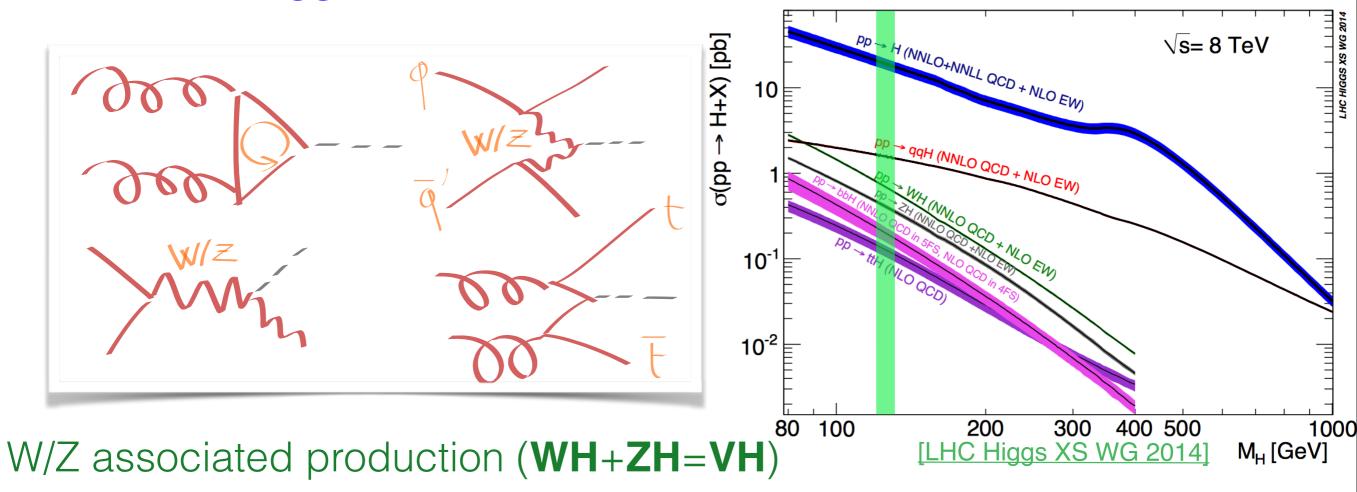

Production/decay modes in the SM

Signals strengths

Constructing our likelihood function

The LHC as a parton collider

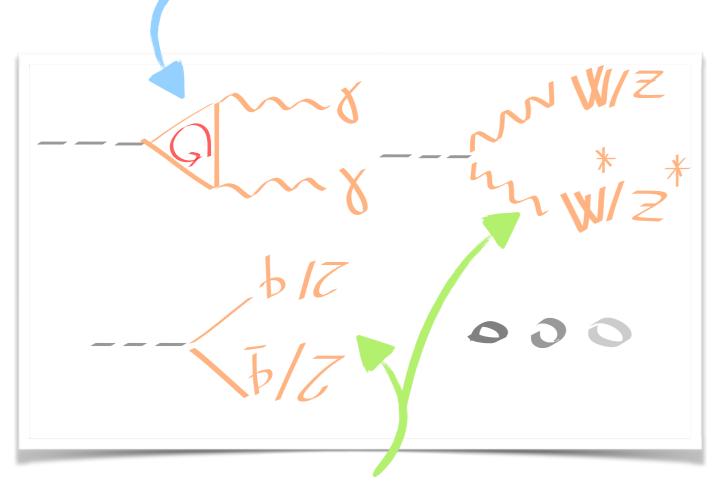
 Due to the high energies in play, the LHC is not simply colliding protons but rather their constituant partons, i.e. quarks and gluons


 To create a Higgs from such a collision, the initial state has to be composed from quarks or gluons:

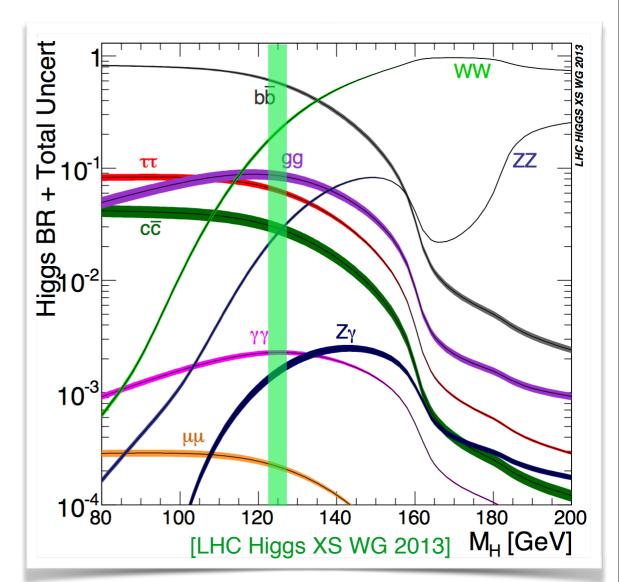
$$q\bar{q}^{(')} \to H$$
 $gg \to H$

Higgs production modes at the LHC

Vector boson fusion (VBF)


Gluon fusion (ggH)

 $t\bar{t}$ associated production (**ttH**)

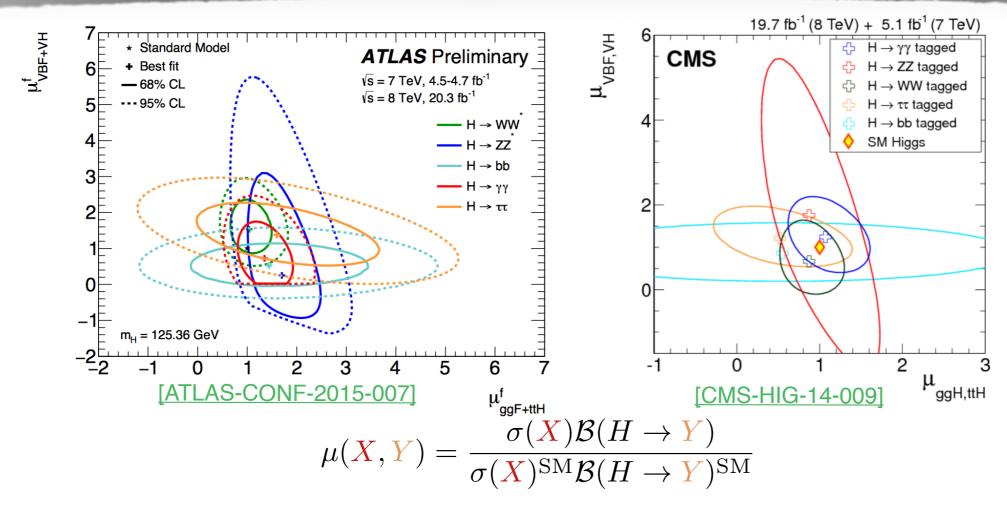

SM Higgs decay modes

Sensitive to new states and modified Higgs couplings

Mass dependence of the couplings accessible for W, Z and third and second generations of fermions at the LHC

125 GeV is quite fortunate!

Signal strengths

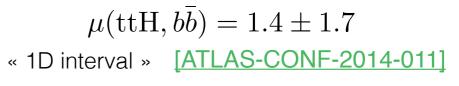

 Deviations of signal rates can be encoded in the form of signal strengths:

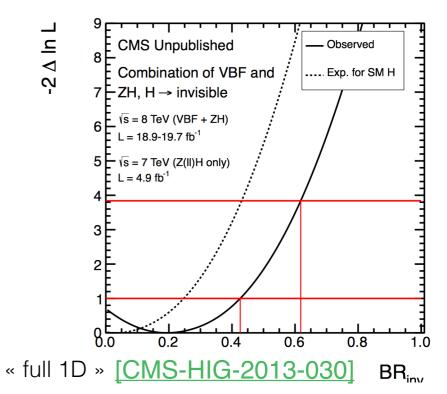
$$\mu(X, Y) = \frac{\sigma(X)\mathcal{B}(H \to Y)}{\sigma(X_{SM})\mathcal{B}(H_{SM} \to Y)}$$

$$X \subset \mathcal{A} = \mathcal{A$$

- Assumptions: small width, 0^+ state, single state
- Signal strengths are measured by ATLAS and CMS (and D0&CDF)
- We want to use these results to constraint new physics scenarios

Signal strengths at the LHC

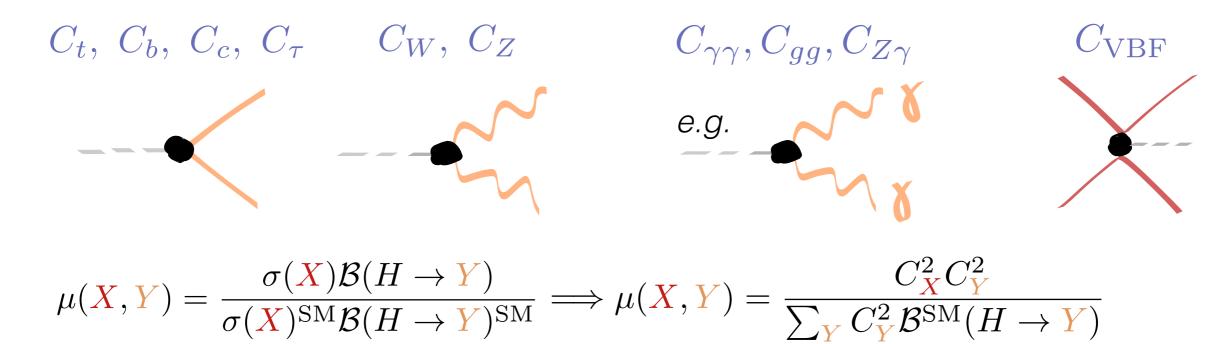



- Signal strengths in $\mu(X,Y)$ vs $\mu(X',Y)$ planes: production modes unfolded from event categories. Usually $X=\mathrm{ggH}+\mathrm{ttH}$, $X'=\mathrm{VBF}+\mathrm{VH}$
- All systematic uncertainties for a given channel taken into account
- 68% (95%) CL contours provided, *i.e.* isolines of $-2 \log L$

Primary experimental input used for the construction of our likelihood ✓

Latest experimental results

Collaboration	Analysis	Type	Reference
ATLAS	$H \to \gamma \gamma, ZZ^*, WW^*, \tau \tau$	2D contour	[CONF-2015-007]
	${ m VH}, H ightarrow bar{b}$	2D contour	[HIGG-2013-023]
	$ZH, H \rightarrow invisible$	full 1D	[HIGG-2013-003]
	${ m ttH}, H o bar{b}$	1D interval	[HIGG-2013-027]
	${ m ttH}, H o \gamma \gamma$	1D interval	[HIGG-2013-08]
	$\mathrm{ttH}, H \to \mathrm{multi-leptons}$	1D interval	[CONF-2015-006]
	$H o \mu \mu$	1D interval	[CONF-2015-007]
	$H o Z\gamma$	1D interval	[CONF-2015-007]
	$H \to \gamma \gamma, ZZ^*, WW^*, \tau \tau$	2D contours	[HIG-2014-009]
CMS	$VH, H o bar{b}$	1D interval	[HIG-2014-009]
	${ m ttH}, H o bar{b}$	1D interval	[HIG-2014-010]
	$\mathrm{ttH}, H \to \gamma \gamma, \tau \tau$	1D interval	[HIG-2014-009]
	$\mathrm{ttH}, H \to \mathrm{multi-leptons}$	1D interval	[HIG-2013-029]
	$ZH + VBF, H \rightarrow invisible$	full 1D	[HIG-2013-030]
CDF & D0	$VH, H o b\bar{b}$	1D interval	[PUB-2013-081]



- Final likelihood is the product of the individual 1D and 2D likelihoods
- Good approximation at LHC Run I! (illustrated later)
- At LHC Run II, systematic uncertainties will dominate over statistical ones
 - → calls for a consistent treatment of the systematics

Parametrizing the likelihood function

Introducing reduced couplings:

 If new decay modes into invisible or undetected particles are open (direct Higgs/Dark matter interplay at the LHC), the signal strengths are modified as

$$\mu(X,Y) \to (1 - \mathcal{B}_{\text{invisible/undetected}})\mu(X,Y)$$

- ⇒ Put constraints on the Higgs couplings, exotic branching ratios
 - ⇒ More generally: test new physics scenarios

Lilith: a tool for constraining new physics from Higgs measurements

Presentation Validation

Meet Lilith

 Python tool: evaluate the Higgs likelihood from the latest experimental signal strengths

Based on earlier works on Higgs fits:

Higgs Couplings at the End of 2012: Bélanger, Dumont, Ellwanger Gunion, Kraml. arXiv:1212.5244

Status of invisible Higgs decays: Bélanger et al. arXiv:1302.5694

Global fit to Higgs signal strengths and couplings and implications for extended Higgs sectors: Bélanger et al. arXiv:1306.2941

Light Likelihood fit for the Higgs

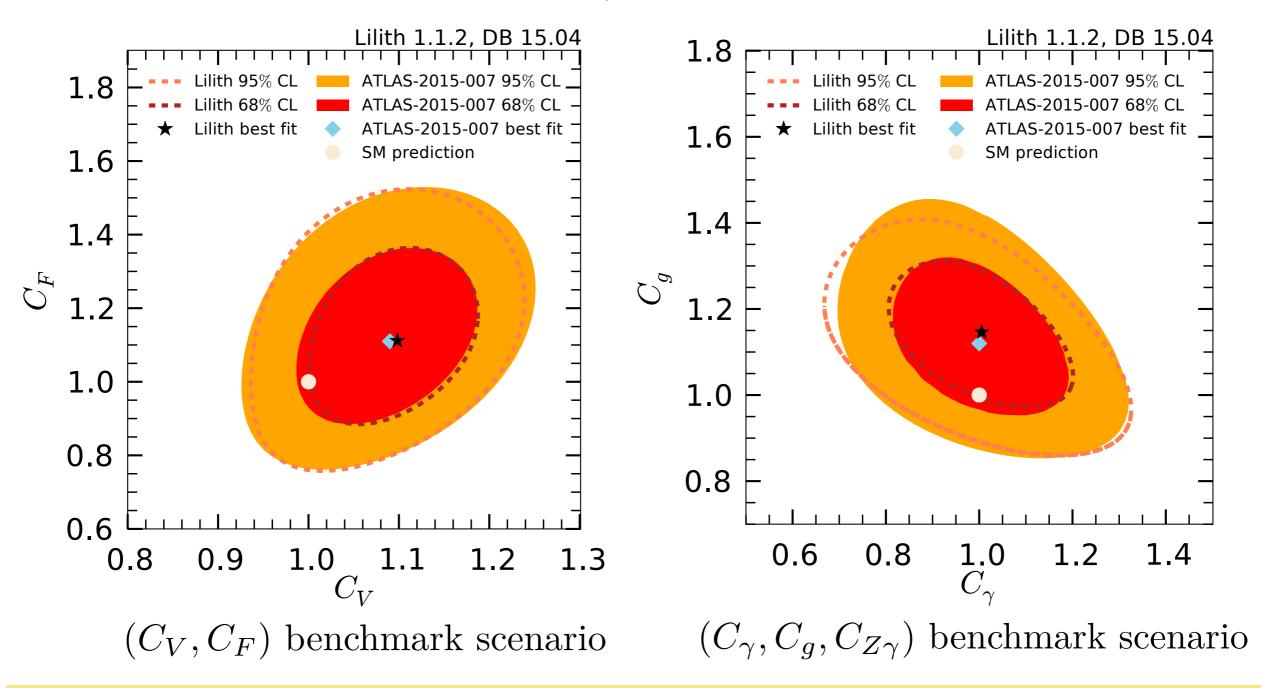
[JB, B. Dumont; arXiv:1502.04138]

Information, Download: http://lpsc.in2p3.fr/projects-th/lilith/

(Google: lilith higgs)

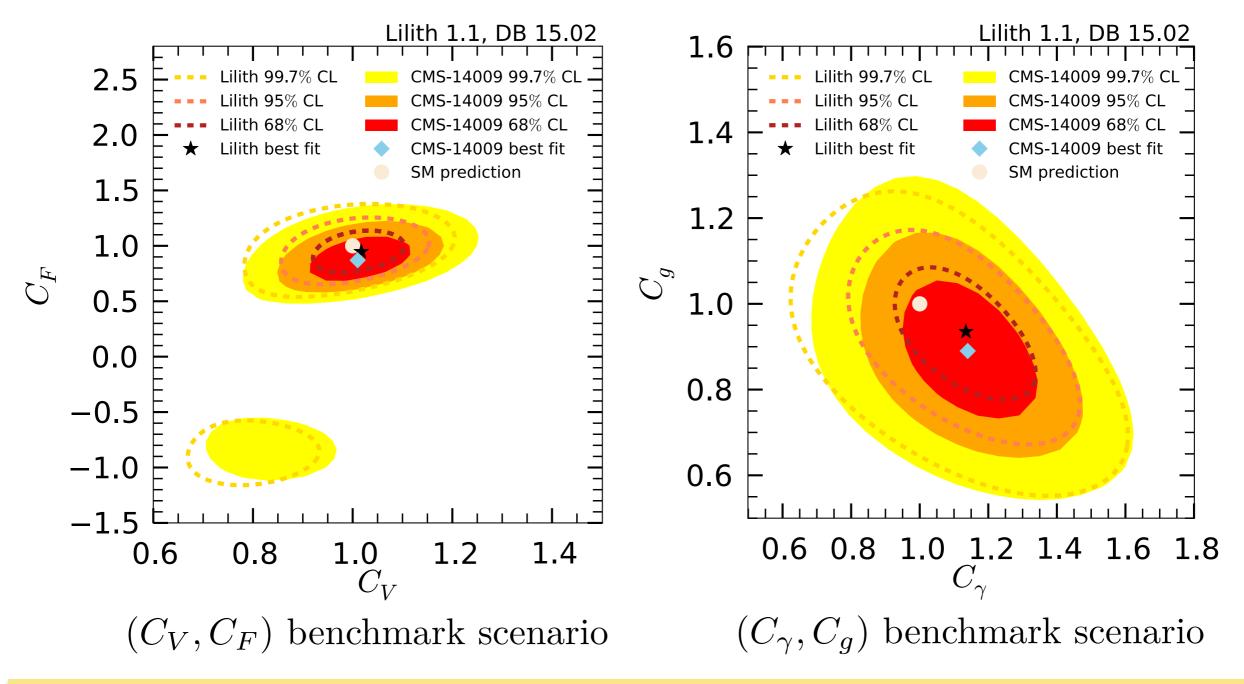
- All formats of experimental signal strengths are handled
- All experimental results are stored in a flexible XML database (updated as new results are published, last update: Moriond 2015)
- Two user input modes:

Reduced couplings as inputs



Signal strengths as inputs

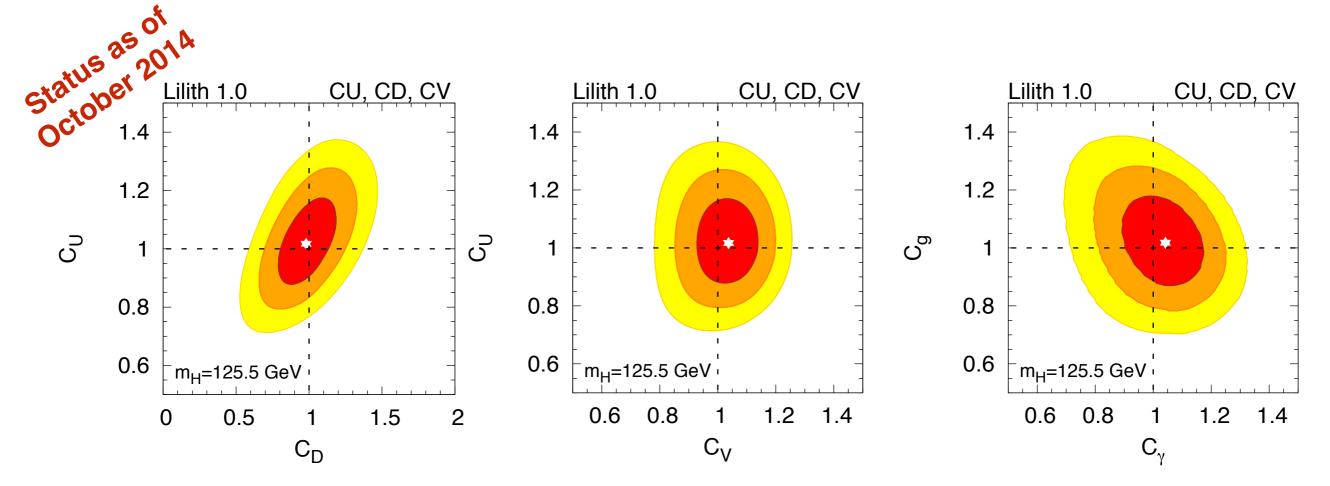
• Evaluate $-2\log L$ for each input points, allow for a statistical interpretation in the frequentist or bayesian approach


Validation of the Lilith likelihood against ATLAS results

 Trying to reproduce the official ATLAS coupling fits (profile likelihood ratio to derive the confidence intervals)

Validation of the Lilith likelihood against CMS results

 Trying to reproduce the official CMS coupling fits (profile likelihood ratio to derive the confidence intervals)


Some applications

Global fit

Phenomenological study of a 2HDM

Simple model fit

• Model: C_U, C_D, C_V, without any extra BSM loop or width contributions

In 1D (profiling over other parameters):

$$C_U = 1.02 \pm 0.10$$

 $C_D = 0.98 \pm 0.14$

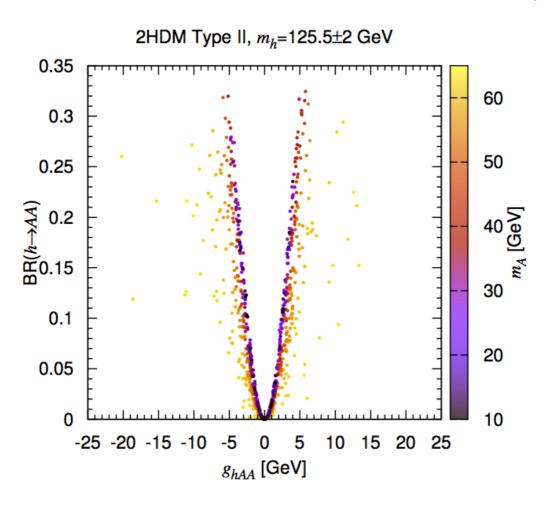
$$C_V = 1.04 \pm 0.07$$

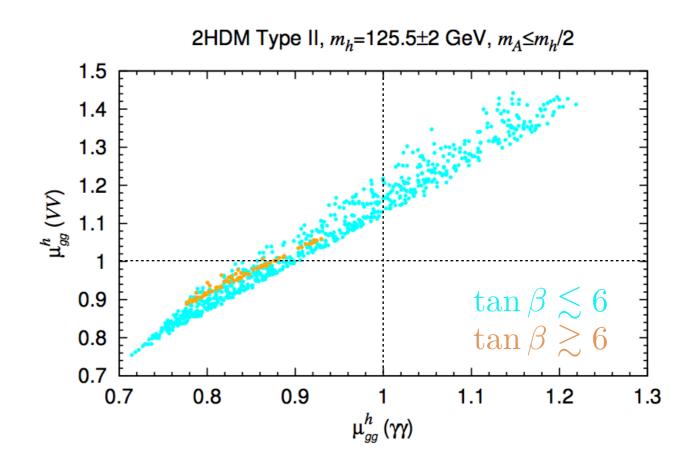
$$C_{\gamma} = 1.04 \pm 0.11$$

 $C_{q} = 1.02 \pm 0.11$

[JB, B. Dumont, S. Kraml; arXiv:1409.1588 (PRD)]

Constraining extended Higgs sectors: a 2HDM example

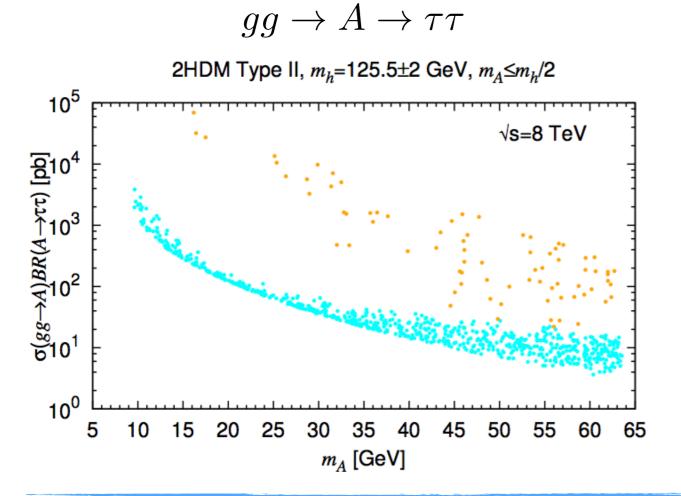

 Two Higgs doublet model (2HDM): Minimal extension of the SM, including a second Y=+1 Higgs doublet


$$\mathcal{V} = m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - [m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.}]
+ \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1)
+ \left\{ \frac{1}{2} \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + \left[\lambda_6 (\Phi_1^{\dagger} \Phi_1) + \lambda_7 (\Phi_2^{\dagger} \Phi_2) \right] \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right\}.$$

- Hypotheses: no CP-violation, no tree level flavor changing neutral current (socalled Type II model in the following)
- Five physical degrees of freedom: 2 CP-even (h, H), 1 CP-odd (A), 2 charged (H+,H-) states
- Impose constraints from: theory (stability, perturbativity...), STU parameters, flavor, direct Higgs searches (light and heavy), signal strengths at 125 GeV

Light pseudo-scalar in the 2HDM: ma<mh/2

h→AA decay mode is open Possibility to probe at the LHC



Strong constraints on h125→AA branching ratio from the Higgs signal strengths Impossible to achieve SM $\mu(gg,VV)$ and $\mu(gg,\gamma\gamma)$ simultaneously LHC Run II will be able to test these scenarios

[JB, J.F. Gunion, Y. Jiang, S. Kraml; arXiv:1412.3385 (PRD)]

Light pseudo-scalar in the 2HDM: $A \rightarrow \tau\tau$ cross-section at LHC8

 $b\bar{b}A, A \to au au$

Very large cross sections over the full m_A range: should produce readily observable peaks

O(10 pb) should be observable in the current dataset

 m_A [GeV]

A→µµ: same shape, factor 100 smaller

At 14 TeV: gain of factor~2 in cross section

[JB, J.F. Gunion, Y. Jiang, S. Kraml; arXiv:1412.3385 (PRD)]

Conclusions

Conclusions

- Strong constraints on the Higgs sector already arise from the LHC precise Higgs measurements
- Global fits are necessary since experimental collaborations cannot cover all new physics scenarios
- Lilith is a Python tool that allows to impose the up-to-date constraints coming from the LHC and Tevatron and has been thoroughly validated

Light Likelihood fiT for the Higgs http://lpsc.in2p3.fr/projects-th/lilith (Google: lilith higgs)

Work in progress!!

check back soon ...

- Getting ready for LHC Run II: thoughts about consistent treatment of systematic uncertainties
- Study of the alignment limits of the 2HDMs

[JB, J.F. Gunion, H.E. Haber, Y. Jiang, S. Kraml; in preparation]

Other aspect of the thesis: Baryon number violation, Minimal flavor violation and R-parity violation [JB, C. Smith; arXiv:1404.5496 (JHEP)]

Backup

Running Lilith

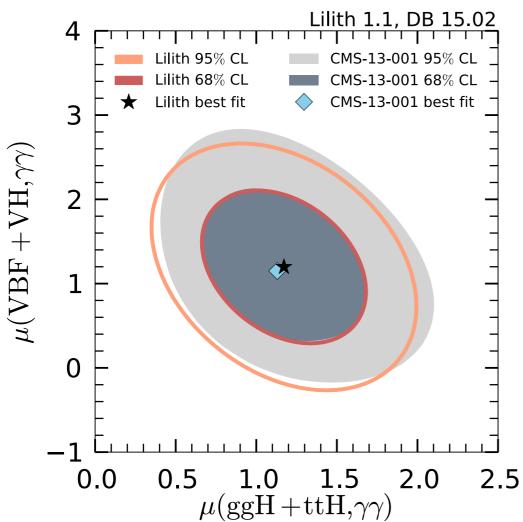
As a Python library (recommended way):

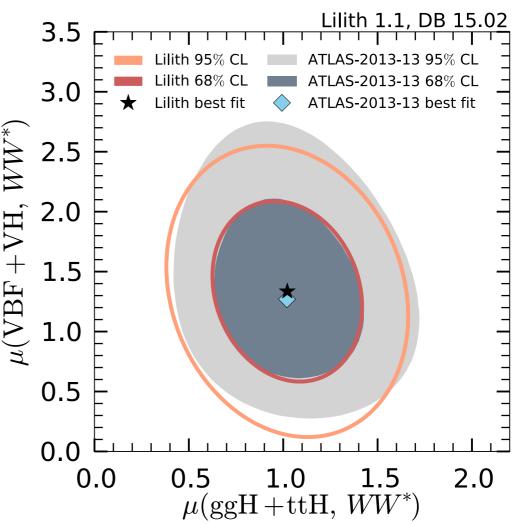
Several methods (read input, format of output..) and attributes of the class Lilith accessible to the user.

| Decident content of the property of the class Lilith accessible to the user. | Decident content of the property of the class Lilith accessible to the user. | Decident content of the property of the class Lilith accessible to the user. | Decident content of the property of the property of the class Lilith accessible to the user. | Decident content of the property of the class Lilith accessible to the user. | Decident content of the property of the property of the class Lilith accessible to the user. | Decident content of the property of t

```
import lilith
lilith0bj = lilith.Lilith()
lilith0bj.readexpinput("data/latest.list")
lilith0bj.readuserinputfile("userinput/
example_couplings.xml")
lilith0bj.computelikelihood()
print "-2logL =", lilith0bj.l
```

bernon@Jeremy:~/Projects/LilithVersions/Code/Lilith-1.1.2\$ python mylilithtest.py
-2logL = 24.1189771501

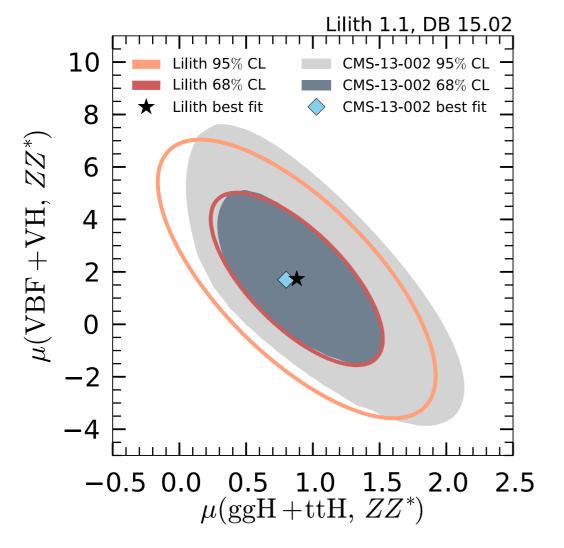

Through the command line interface:

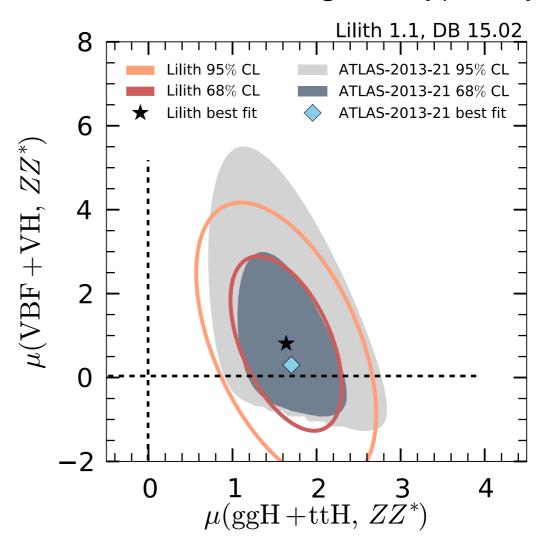

Through the C/C++/Root interface (C/Python API):

Several functions defined, working example shipped with the code.

Validity of the bivariate normal approximation (I/II)

- When only the 68% CL contours in the signal strength planes are provided, we use a bivariate normal distribution to reconstruct the likelihood
- We compare the reconstruction and the official results to assess the validity of this approximation

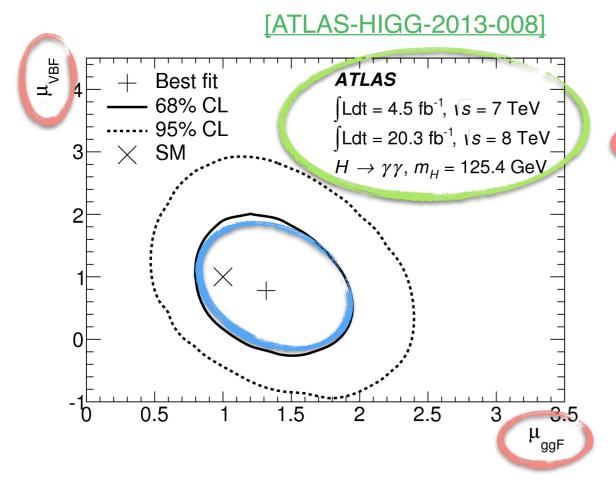




Generally very good ✓

Validity of the bivariate normal approximation (II/II)

 Deviations from the bivariate normal approximation are however expected for channels with low statistics, as the Poisson distribution describing the counting experiment has not yet entered the Gaussian regime, typically: ZZ*



Publication of the full likelihood function would make this approximation unnecessary

XML experimental database

- All latest experimental results from ATLAS and CMS (presented earlier) are available in the Lilith database, superseded results as well
- For clarity one XML file corresponds to one experimental result, for instance,


```
<expmu decay="gammagamma" dim="2" type="n">
  <experiment>ATLAS</experiment>
  <source type="published">HIGG-2013-08</source>
  <sqrts>7+8</sqrts>
  <mass>125.4</mass>
  <CL>68%</CL>
  <eff axis="x" prod="qqH">1</eff>
  <eff axis="y" prod="VBF">1</eff>
  <bestfit>
    < x > 1.361 < / x >
    <y>0.858</y>
                      Bivariate normal distribution
  </bestfit>
                             parametrization
  <param>
                               (best-fit+C<sup>-1</sup>)
    <a>7.393</a>
    < b > 0.998 < /b >
    <c>1.951</c>
  </param>
</expmu>
```

/Lilith-1.1/data/ATLAS/Run1/HIGG-2013-08_ggH-VBF_gammagamma_n68.xml

XML user input: reduced coupling mode

```
<?xml version="1.0"?>
<lilithinput>
  <reducedcouplings>
    <mass>125</mass>
    <C to="tt">1.0</C>
    <C to="cc">1.0</C>
    <C to="bb">1.0</C>
    <C to="tautau">1.0</C>
    <C to="ZZ">1.0</C>
    <C to="WW">1.0</C>
    <C to="gammagamma">1.0</C>
    <C to="Zgamma">1.0</C>
    <C to="gg">1.0</C>
    <C to="VBF">1.0</C>
    cision>BEST-QCD</precision>
    <extraBR>
      <BR to="invisible">0.0
      <BR to="undetected">0.0
    </extraBR>
  </reducedcouplings>
</lilithinput>
 /Lilith-1.1 released/userinput/example couplings.xml
```

Higgs mass [123-128] GeV

$$\mathcal{L} = g \left[C_W m_W W^{\mu} W_{\mu} + C_Z \frac{m_Z}{\cos \theta_W} Z^{\mu} Z_{\mu} \right] H$$
$$- g \sum_{f=t,b,c,\tau} C_f \frac{m_f}{2m_W} f \bar{f} H$$

Multi-labels also defined: uu=(tt, cc), VV= (WW, ZZ) etc

If not given, computed internally assuming SM particle contributions only, at a given *precision* with cross sections and partial widths from HIGLU, HDECAY, VBFNLO

Invisible, undetected branching ratios

$$\mu(X, Y) \to (1 - \mathcal{B}_{\text{invisible/undetected}})\mu(X, Y)$$

Possibility to also define CP-violating couplings and arbitrary number of Higgs states

XML user input: signal strengths mode

```
<?xml version="1.0"?>
                                                               \mu(X,Y) = \frac{\sigma(X)\mathcal{B}(H \to Y)}{\sigma(X)^{\text{SM}}\mathcal{B}(H \to Y)^{\text{SM}}}
lilithinput>
  <signalstrengths part="h">
    <mass>125</mass>
    <mu prod="ggH" decay="gammagamma">1.0</mu>
    <mu prod="ggH" decay="VV">1.0</mu>
    <mu prod="ggH" decay="bb">1.0</mu>
    <mu prod="ggH" decay="tautau">1.0</mu>
    <mu prod="VVH" decay="gammagamma">1.0</mu>
    <mu prod="VVH" decay="VV">1.0</mu>
    <mu prod="VVH" decay="bb">1.0</mu>
    <mu prod="VVH" decay="tautau">1.0</mu>
    <mu prod="ttH" decay="gammagamma">1.0</mu>
    <mu prod="ttH" decay="VV">1.0</mu>
    <mu prod="ttH" decay="bb">1.0</mu>
    <mu prod="ttH" decay="tautau">1.0</mu>
    <redxsBR prod="ZH" decay="invisible">0.0</redxsBR>
    <redxsBR prod="VBF" decay="invisible">0.0</redxsBR>
  </signalstrengths>
</lilithinput>
                                                             \mu(X, \text{invisible}) \equiv C_X^2 \mathcal{B}_{\text{invisible}}
/Lilith-1.1 released/userinput/example mu.xml
```

LPSC PhD seminars, 30 April 2015

Signal strengths

Signal strengths

Experimental Higgs results are expressed in the form of signals strengths, for a set of selection criteria:

$$n^{\exp} = \mu n_s^{\exp} + n_b^{\exp}$$
 $\mu = \frac{\sigma \times A \times \epsilon}{[\sigma \times A \times \epsilon]^{SM}}$

Assuming that:

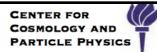
-Observed signal is a sum of the SM ones: $\sigma = \sum_{X,Y} \sigma(X) \mathcal{B}(H \to Y)$

-Acceptance, efficiency same as in the SM: $(A \times \epsilon)_{X,Y} = (A \times \epsilon)_{X,Y}^{SM}$

the signal strength read

$$\mu = \sum_{X,Y} \operatorname{eff}_{X,Y} \frac{\sigma(X)\mathcal{B}(H \to Y)}{\sigma(X)^{SM}\mathcal{B}(H \to Y)^{SM}} \equiv \sum_{X,Y} \operatorname{eff}_{X,Y} \mu(X,Y)$$

- ✓ Possibility to assess compatibility of experimental results with a given model by means of a global fit
- ✓ Construction of a likelihood function out of these results


Drawbacks of the Run I approach

- Multiplying the likelihoods together leads to a multi-counting of shared systematic uncertainties
- The profiling of common systematics may not be consistent: different channels may pull the profiling towards different directions
 - ⇒ need a **consistent** treatment of the systematics
- Theoretical systematic uncertainties are time-dependent, analyses should not be re-performed for every new calculation
 - → decouple shared systematic uncertainties from experimental results (luminosity, inclusive ggH cross-section, ggH+2-jets,...)

« A novel approach to Higgs Coupling Measurements » K. Cranmer, S. Kreiss, D. Lopez-Val, T. Plehn [arXiv:1401.0080]

Effective Likelihoods

Start with the full likelihood function
$$L_{\mathrm{full}}(\boldsymbol{\mu}, \boldsymbol{\alpha}) = \prod_{c \in \mathrm{category}} \left[\begin{array}{c} \mathrm{vield} \\ \mathrm{Pois}(n_c | \nu_c(\boldsymbol{\mu}, \boldsymbol{\alpha})) \prod_{e=1}^{n_c} f_c(x_e | \boldsymbol{\mu}, \boldsymbol{\alpha}) \end{array} \right] \prod_{i \in \mathrm{syst}} f_i(a_i | \alpha_i)$$
 Expected number of events v has signal strength μ that scales a signal yield v

Subscripts

c ... category p ... production

d ... decay

Expected number of events $\sqrt{}$ has signal strength μ that scales a signal yield s which depends on lpha

$$u_c(oldsymbol{\mu},oldsymbol{lpha}) = \sum_{p,d} \mu_{pd} s_{cpd}(oldsymbol{lpha}) + b_c(oldsymbol{lpha})$$

Introduce μ^{eff} that scales with respect to some fixed theoretical reference at α_0 .

Absorb α -dependence into $\mu^{\text{eff}}(\mu,\alpha)$

$$u_c(oldsymbol{\mu},oldsymbol{lpha})
ightarrow \sum_{p,d} \mu_{cpd}^{ ext{eff}}(oldsymbol{\mu},oldsymbol{lpha}) \, s_{cpd}(oldsymbol{lpha}_0) + b_c(oldsymbol{lpha}_0)
onumber \ L_{ ext{eff}}(oldsymbol{\mu}_{ ext{eff}}) = L_{ ext{main}}(oldsymbol{\mu} = oldsymbol{\mu}_{ ext{eff}},oldsymbol{lpha}_0)$$

Here $\mu^{\text{eff}}(\mu,\alpha)$ is a function that absorbs the dependence on α , but we can also think of μ^{eff} as a parameter on its own and measure L_{eff}(µeff)

$$L_{\mathrm{full}}(\boldsymbol{\mu}, \boldsymbol{\alpha}) pprox L_{\mathrm{recouple}}(\boldsymbol{\mu}, \boldsymbol{\alpha}) \equiv L_{\mathrm{eff}}(\boldsymbol{\mu}^{\mathrm{eff}}(\boldsymbol{\mu}, \boldsymbol{\alpha})) \cdot L_{\mathrm{constr}}(\boldsymbol{\alpha})$$

Need a **reparametrization template** $\mu^{eff}(\mu,\alpha)$ with parameters η and a **method** to determine the η s such that $L_{recouple}$ approximates L_{full} :

Kyle Cranmer (NYU)

LHC Higgs XS WG2, Dec 8, 2014

$$\mu_{pd}^{\text{eff}}(\boldsymbol{\mu}, \boldsymbol{\alpha}) = \mu_{pd} + \sum_{i, p'} \mu_{p'd} \, \eta_{pi}^{p'} \left(\alpha_i - \alpha_{0,i} \right) + \sum_i \phi_i (\alpha_i - \alpha_{0,i})$$