

Electron and Photon Spectra of Gd following Neutron Capture

Boon Quan Lee

Boon Quan Lee, Dep. of Nuclear Physics, Australian National University

16 Oct 2015, ABNCT 2015, Grenoble

Motivation of GdNCT

Emission of low-energy Auger electrons

> Relaxation time $<10^{-12}$ s

- A conversion process can produce multiple electrons
- Majority are low in energy (< 5 keV)</p>

Auger cascade in Xe From M.O. Krause, J. Phys. Colloques, 32 (1971) C4-67

Discrepancies in Auger yields

	RADAR	DDEP	Eckerman (MIRD)	Howell (AAPM)	Nikjoo	Stepanek	Pomplun
^{99m} Tc	0.12	0.13	4.41	4.0			3.4
¹¹¹ In	1.14	1.16	7.43	14.7		6.05	5.63
¹²³ I	1.06	1.08	13.7	14.9			7.3
¹²⁴ I	0.71		9.17		8.2		
¹²⁵ I	1.77	1.78	23.0	24.9	20.2	14.5	12.2
¹⁴⁰ Nd	0.798		9.71				
¹⁶⁵ Er	0.685		7.26				
Vacancy propagation	DET K & L Shells	DET K & L Shells	DET neutral	MC neutral	MC neutral	MC isolated	MC isolated

IAEA Coordinated Research Project

- **Title:** Auger Electron Emission from Nuclear Decay: Data Needs for Medical Applications
- **AIMS:** Realistic model to evaluate full energy spectrum from nuclear decay

2013 IAEA Consultants' Meeting

- Use of accurate conversion coefficients and electron capture rates needed for the initial vacancy distribution
- Full Monte Carlo treatment of Auger cascade
- □ DF calculations of transition energies to account for existence of multiple vacancies

Comparison of theoretical Auger yields

	RADAR	DDEP	Eckerman (MIRD)	Howell (AAPM)	Stepanek	Pomplun	Nikjoo	ANU	ANU
⁷¹ Ge	1.65							3.98	4.88
^{99m} Tc	0.12	0.13	4.41	4.0		3.4		3.52	4.39
¹¹¹ In	1.14	1.16	7.43	14.7	6.05	5.63		5.84	7.17
¹²³ I	1.06	1.08	13.7	14.9		7.3		7.38	12.3
¹²⁴ I	0.71		9.17				8.2	5.04	8.38
¹²⁵ I	1.77	1.78	23.0	24.9	14.5	12.2	20.2	11.9	20
¹⁴⁰ Nd	0.80		9.71					7.82	9.01
¹⁴⁰ Pr			5.16					3.82	4.54
¹⁵⁵ Tb	1.25							12.6	13.2
¹⁶¹ Tb	0.57							9.45	9.72
¹⁶⁵ Er	0.69		7.26					6.68	7.10
¹⁵⁵ Gd(n,γ)								6.07	6.55
¹⁵⁷ Gd(n,γ)					9.71		4.93	4.33	4.65
Vacancy propagation	DET K & L Shells	DET K & L Shells	DET neutral	MC neutral	MC isolated	MC isolated	MC neutral	MC isolated	MC neutral

Energy Spectra of $Gd(n, \gamma)$

Electron

Average energy spectra of $Gd(n, \gamma)$

	¹⁵⁵ Gd(n,γ) ¹⁵⁶ Gd	¹⁵⁷ Gd(n,γ) ¹⁵⁸ Gd
No. X-ray	0.50	0.32
X-ray energy	16.7	10.4
No. IC	0.89	0.64
IC energy	67.7	44.0
No. Auger	6.55	4.65
Auger energy	5.53	3.83
No. LE e- (<50 keV)*	7.37	5.26
LE e- energy*	71.1	47.7

energy in keV.

per neutron capture.

* max projected range (NIST) = 43 μ m

Average energy deposition in water by short-range radiations (simulation)

Radius (nm)	¹⁵⁵ Gd(n,γ) ¹⁵⁶ Gd	¹⁵⁵ Gd(n,γ) ¹⁵⁶ Gd	¹⁵⁷ Gd(n,γ) ¹⁵⁸ Gd	¹⁵⁷ Gd(n,γ) ¹⁵⁸ Gd - A	¹⁰ B(n,a) ⁷ Li – B	Ratio of B to A
1	0.17	0.23	0.12	0.16	0.59	3.7
10	0.55	0.68	0.39	0.49	5.23	10.7
100	1.67	1.88	1.19	1.34	51.7	38.6
1000	4.81	5.05	3.47	3.63	498	137
5000	7.09	7.35	5.38	5.55	1923	346
10000	10.5	10.8	8.79	8.96	2339	261
Vacancy Propagation	Isolated	Neutral	Isolated	Neutral		

energy in keV.

per neutron capture.

Energy deposition in water by conversion and Auger electrons (simulation)

Self-absorption in Gd

Radius (nm)	¹⁵⁵ Gd(n,γ) ¹⁵⁶ Gd	¹⁵⁷ Gd(n,γ) ¹⁵⁸ Gd
1	0.39 (3.6%)	0.28 (3.1%)
5	0.91 (8.4%)	0.64 (7.2%)
10	1.44 (13.4%)	1.02 (11.4%)
50	2.45 (22.7%)	1.74 (19.4%)
100	3.89 (36.1%)	2.76 (30.8%)
1000	8.79 (81.6%)	6.24 (69.6%)

energy in keV. per neutron capture.

*Percentage relative to energy absorption in water of 10 $\mu{\rm m}$ radius.

Average spectrum following K-edge photoionization of Gd

	¹⁵⁷ Gd(n,γ) ¹⁵⁸ Gd	K-edge Gd
No. X-ray	0.32	0.97
X-ray energy	10.4	35.3
No. Auger	4.65	7.67
Auger energy	3.83	7.44
No. Photo e [_]	-	1.0
Photo e⁻energy	-	2.79

Radius(nm)	¹⁵⁷ Gd(n,γ) ¹⁵⁸ Gd	K-edge Gd
1	0.16	0.27
10	0.49	0.94
100	1.34	2.80
1000	3.63	6.25
5000	5.58	7.10
10000	8.96	8.33

energy in keV.

per neutron capture or photoionization.

Summary & Outlook

- Full energy spectra of Gd following NC based on the latest nuclear data from ENSDF
- Local energy deposition (homogeneous) has been simulated and compared to ¹⁰B(n,a)⁷Li – generally BNC is higher per NC event in different volumes of liquid water
- Self-absorption by Gd particles can be significant need nanoparticles
- K-edge photoionization generates more Auger electrons than GdNC per event
- Database of Auger spectra is in development connected to ENSDF

Collaborators

Australian National University, Australia Tibor Kibédi Andrew Stuchbery Marteen Vos Mahananda Dasgupta Kalman Robertson University NSW/ADFA, Australia Heiko Timmers Argonne National Laboratory, USA Filip Kondev

Project funded for 2014–2016 by the Australian Research Council, DP140103317

Karolinska

MALMÖ UNIVERSITY

Institut Laue-Langevin, Grenoble, France Ulli Köster University of Oxford, UK Nadia Falzone Malmö University, Malmö, Sweden Per Jönsson Jörgen Ekman University Surrey, UK Alan Nichols Karolinska Institutet, Stockholm, Sweden Hooshang Nikjoo Denmark Technical University **Gregory Severin** Joint Institute for Nuclear Research Alois Kovalik Anvar Inoyatov

