A portable and directional fast neutron detector MIMAC-FASTn

An application : AB-NCT

Nadine Sauzet Laboratoire de Physique Subatomique et de Cosmologie (LPSC-Grenoble) (UJF Grenoble 1, CNRS/IN2P3, Grenoble INP)

LABEX ENIGMASS – Valorisation MIMAC

Summary

1. Strategy for fast neutron detection with MIMAC

- 2. Electron/Recoil discrimination
- 3. Detection of thermal neutrons
- 4. Energy calibration
- 5. Detection of a few MeV neutrons

Project roots

- MIMAC project (MIcro-TPC Matrix of Chambers):
 - Instrumentation dedicated to directional non baryonic dark matter detection,
 - Developed at LPSC-Grenoble (electronics, gas system, data acquisition, mechanical structure, quenching measurements),
 - Can be adapted for fast neutron detection.
- Instrumentation solution and originality :
 - Coupling of a specifically designed fast and self-triggered electronics, to a micro-patterned detector with a pixelated anode,
 - Coupling thanks to a specific tight interface,
 - System performance : very low electronic noise.

Detection principle (1)

 Detection based on a nuclear recoil tracking, that results from the interaction between a neutron and a gas nucleus.

Recoil Energy max = 64 % Neutron Energy

Detection principle (2)

- Drift in a ionization chamber,
- Gas amplification in a MicroMegas,
- Readout on a pixelated anode, sampled at 20 ns.

Detector preview

MIMAC detector

1st prototype IRSN detector

MIMAC-FASTn

DIRE prematuration program

Operational parameters

- Operational parameters adapted for high energy neutrons detection :
 - An inert gas mixture : He / CO2
 - Gas pressure : around atmospheric pressure
- Typical neutron energy range = [120 keV; 6 MeV]
- Flexibility to cover different energy scales.

Nuclear recoils signature

Example of a recoil track in a He / CO2 mixture :

Associated energy :

1. Strategy for fast neutron detection with MIMAC

2. Electron/Recoil discrimination

- 3. Detection of thermal neutrons
- 4. Energy calibration
- 5. Detection of a few MeV neutrons

Electron/recoil discrimination

• Objective :

Discriminate recoils (resulting from neutron/gas nucleus interaction), from electrons

• Origin of electrons :

- Compton electrons resulting from gamma rays interaction with the detector walls,
- $\circ \beta$ desintegration of nucleii intrinsic to the detector.
- Cosmic rays : muons, protons.

Electron/recoil discrimination for a few MeV neutrons

- Measure with a thermalized AmBe source
- Energy spectrum :

Track length=f(Energy):

- 1. Strategy for fast neutron detection with MIMAC
- 2. Electron/Recoil discrimination
- **3.** Detection of thermal neutrons
- 4. Energy calibration
- 5. Detection of a few MeV neutrons

Thermal neutrons detection (1)

Exploitation of the neutron capture reaction : ¹⁰B(n,α)

with thermal and epithermal neutrons

$${}^{10}B + n \longrightarrow {}^{7}Li^* + \alpha \longrightarrow {}^{7}Li + \alpha + \gamma \qquad (94\%)$$

$${}^{10}B + n \longrightarrow {}^{7}Li + \alpha \qquad (6\%)$$

Secondaries energies and estimated tracks' lengths :

Particule	Energy	Track length
94 %		
α	[1,12 MeV ; 1,47 MeV]	[3,4 cm ; 4,13 cm]
Li	[515 keV ; <mark>840 keV</mark>]	[2,2 cm ; 2,8 cm]
6 %		
α	[1,43 MeV ; <mark>1,78 MeV</mark>]	[4,2 cm ; 5,2 cm]
Li	[835 keV ; 1,16 MeV]	[2,8 cm ; 3,3 cm]

Thermal neutrons detection (2)

Experiment performed at INFN / Legnaro

 In collaboration with Buenos Aires, Grenoble, Cadarache, Legnaro, Sevilla

Principle :

- Deuteron beam of 1,45 MeV
- $\circ\,$ A thin ⁹Be target of 10 μm
- Neutron detector : first prototype (IRSN), adapted for operation with He/CO₂ gas mixture.

Thermal neutrons detection (3)

- Integration of a natural boron layer, inside the neutron detector :
 - Aluminium plate holder inside the cage field,
 - At 3 cm from the front of the cathode, and 14 cm from the mesh.

Thermal neutrons detection (4)

Configuration of the experiment :

- Moderation of neutrons with polyethylene plates
- Deuteron beam current \approx 60 nA
- Count rate ≈ 30 c/s

Neutron detector

Thermal neutrons detection (5)

Check of the boron layer location :

• Example of a track behind the boron layer :

No electrical field distorsion

Thermal neutrons detection (6)

Energy spectrum with thermal neutrons :

Raw spectrum, after minimal cuts :

After data selection :

Thermal neutrons detection (7)

Lithium track and energy :

Alpha track and energy :

Thermal neutrons detection (8)

Track length = f(Energy):

- 1. Strategy for fast neutron detection with MIMAC
- 2. Electron/Recoil discrimination
- 3. Detection of thermal neutrons

4. Energy calibration

5. Detection of a few MeV neutrons

Energy calibration

- Strategy:
 - Exploitation of the thermal neutrons detection principle.
 - $\circ~$ Identification of the end-points of α and Li particles distributions.
 - Definition of a few observables, relevant to identify the end-points.
- Example of resulting energy range :
 - 0 [120 keV ; 6 MeV]
 - o [70 keV; 3,8 MeV]

- 1. Strategy for fast neutron detection with MIMAC
- 2. Electron/Recoil discrimination
- 3. Detection of thermal neutrons
- 4. Energy calibration

5. Detection of a few MeV neutrons

Detection of a few MeV neutrons (1)

• Objective :

• Faisability to build a fast neutron spectrum in the range [120 keV; 6 MeV]

Principle :

- Fast neutrons from the reaction ⁹Be(d,n)
- Same protocol as for the thermal neutrons detection, without polyethylene plates.
- Detector at 90° and 35° of the target plan.

Present results :

Preliminary state

Detection of a few MeV neutrons (2)

Perspective

- Purpose of MIMAC-FASTn : characterization of fast neutron fields :
 - For AB-NCT subsets sizing,
 - For AB-NCT daily operation.
- Integration of a moderator and of a boron coating :
 - To detect thermal neutrons,
 - to estimate the fast neutrons dose in the patient.
- Manufacturing of a demonstrator.

