Opportunities for Test Experiments at ILL Grenoble

Ulli Köster 16 October 2015

ILL instruments

The rising star for radionuclide therapy

The ILL Reactor

5.10¹⁸ neut./s generated at 57 MW

Thermal, cold and hot neutrons

Neutrograph: intense thermal neutron beam

Flux 3·10⁹ n.cm⁻²s⁻¹
Beam 20 x 16 cm²
L/D~140, i.e. θ ~ 7 mrad
1.6 m x 2.6 m usable area in casemate
1 m heavy concrete shielding

ILL instruments

40 instruments running simultaneously for 200 days per year

Guided neutron beams are "clean"

Fast neutrons and gamma rays are not transported.

Cold neutron beam H113 to PF1b

H. Abele et al. Nucl. Instr. Meth. A562 (2006) 407.

H. Abele et al. Nucl. Instr. Meth. A562 (2006) 407.

energy: <E>≈5 meV

Measurement of collimation performance

A. Blanc et al. EPJ Web of Conferences 62 (2013) 01001.

Gafchromic radiochromic films

Polyester Overlaminate - 50 microns	
Adhesive Layer - 25 microns	
Active Layer - 30 microns	

ol	ester	Subs	trate	. 175	micron
UI.	corei	Juna	uate	- 110	microm

Laver Thickness***		Approximate	COMPOSITION (ATOM%)									
	microns	density g/cm2	н	Li	С	N	0	Na	S	CI	K	Br
Polyester film base*	50	1.35	36.4%	0.0%	45.5%	0.0%	18.2%	0.0%	0.0%	0.0%	0.0%	0.0%
Adhesive*	25	1.2	57.1%	0.0%	33.3%	0.0%	9.5%	0.0%	0.0%	0.0%	0.0%	0.0%
Surface layer (assumes 7.5% moisture)**	5	1.2	56.9%	0.9%	25.7%	0.0%	15.6%	0.0%	0.0%	0.9%	0.0%	0.0%
Active layer (assumes 7.5% moisture)**	30	1.2	58.3%	0.8%	29.6%	0.1%	10,7%	0.0%	0.0%	0.3%	0.1%	0.1%
Polyester film base*	175	1.35	36.4%	0.0%	45.5%	0.0%	18.2%	0.0%	0.0%	0.0%	0.0%	0.0%
Overall Composition			40.85%	0.10%	42.37%	0.01%	16.59%	0.00%	0.00%	0.04%	0.01%	0.01%

http://www.ashland.com/Ashland/Static/Documents/ASI/Advanced%20Materials/lewis-radiochromic-film.pdf

Active layer: lithium pentacosa-10,12-diynoate

Slow neutrons capture 50% in Li, 25% in N \Rightarrow Recoils dominate local polymerization and colouring

Excellent beam collimation

Slow neutrons got less dangerous

ILL's Deuteration Laboratory

Growth in D ₂ O
Bacteria
Algae
Yeast
Euglena (protiste)
Embryo plants
Mammals
ATOM % D Adapted from Katz and Crespi (1970)

Fig. 3. Plants of Atrops beliadonsa grown hydroponically in nutrient solutions taining increasing concentrations of D.O. Richma et al. (29)1

T. Forsyth, M. Haertlein, ILL.

The Deuteration Laboratory Previous highlights

Mechanosensitive channel - NMR and neutron reflectometry (Karlshrue/Oxford). *Biophys J.*

DNA Crowding (Leiden), *Phys Rev.*

Pyruvate Dehydrogenase Complex (Glasgow), J. Mol. Biol.

Type III Anti freeze protein (IGBMC) J. Mol. Rec.

T. Forsyth, ILL.

Xylose Isomerase (LANCSE, ILL, Keele, ISIS, Chase)

Amyloid (Lund) (in prep)

Experiment Opportunities at ILL

- ILL provides intense beams of slow neutrons from neV to eV
- Very clean, minimum fast neutron and gamma contamination
- Small divergence for good collimation
- On-site labs for deuteration and ¹⁵N doping (P2)
- On-site biology labs for (slightly) radioactive samples
- On-site synchrotron & X-ray sources for comparative studies
- Test of imaging devices with ${}^{10}B(n,\alpha\gamma)$ or ${}^{157}Gd(n,\gamma)$
- Not clinical, not pre-clinical, but fundamental radiobiology studies in vitro
- Compare internalizing vs. non-internalizing Gd vectors
- Measure RBE_B, RBE_{Gd}, RBE_H, RBE_N for different cell lines
- Needs experienced radiobiology group!

😹 ICTR-PHE 🍩 2016 🖤

INTERNATIONAL CONFERENCE ON TRANSLATIONAL RESEARCH IN RADIATION ONCOLOGY

PHYSICS FOR HEALTH IN EUROPE

February 15 - 19, 2016 IMPORTANT DATES CICG, Geneva, Switzerland Abstract submission and early

registration deadline: Oct 30, 2015

Late registration deadline: Jan 18, 2016

http://cern.ch/ictr-phe16

UNITING PHYSICS, BIOLOGY AND MEDICINE FOR BETTER HEALTHCARE

Outlook

Next ILL proposal deadline:9 February 2016ICTR-PHE 2016 Conference:15 – 19 February 2016

