Dose monitoring with prompt gamma-rays

Denis Dauvergne AB-NCT workshop Grenoble, October 15-16, 2015 γ emission for neutron capture by ¹⁰B and ¹⁵⁷Gd

Boron neutron capture

¹⁰B +
$$n_{th} \rightarrow {}^{11}B^{*}$$
 (6%) ⁴He + ⁷Li 2.79 MeV
(94%) ⁴He + ⁷Li 2.31 MeV + γ 0.478 MeV

SPECT imaging: boron induced dose

Gadolinium neutron capture

 157 Gd + n_{th} \rightarrow 158 Gd 7.9 MeV (IC and/or γ rays)

several gamma lines: position of Gd

Prompt gamma monitoring of BNCT

Prompt-gamma imaging of BNCT

- Blood ¹⁰B concentration follow-up (Raaijmakers Acta Onc 1995)
- First studies by Verbakel (NIMA 1997, clinical tests Int J Rad Onc Biol Phys 2003) Ge detector
- Murata et al, Prog. Nucl Science and Technology 2011
 Simulation MCNP with CdTe detector (511 keV not taken into account)

– Per Munck af Rosenschöld (JINST 2006): HPGe , Pinhole collimator

Gamma emission for (n, γ) reaction on ¹⁵⁷Gd

Sakurai, Appl Radiat Isot 2009

+ Large multiplicity (> 1 gamma/capture)

Poly-energetic photons

Background from CLaRyS collaboration: Prompt γ imaging of hadrontherapy

- Nuclear fragmentation
 - High probability
 - Secondary particles
 - γ, *n*, *p*, fragments
 - Radioactive Isotopes (β⁺)
- Emission profiles correlated to the projectile range
- PG yield above 1 MeV : ~ 0.3% /cm per proton ~ 2% /cm per carbon ion Energy range 1-10 MeV
- High background (neutrons)

Multi-slit collimated camera

• 1D profile

Profile obtained with an optimized TOF camera for 4×10^9 protons [Pinto. PMB 2014]

PM + BGO blocs from HR+ PET (LPC)

BGO2 2D cut perion

2D reconstructed position

Tungsten alloy collimator (12x10x0.2 cm slabs)

[Krimmer, NIMA 2015]

• 2D profile: pinhole camera?

Compton camera

11-14

80

100

20

Geant4 simulations

- optimization of the setup
- check of feasibility for medical applications

JL Ley, PhD thesis Lyon 2015

Simulation: nuclear medicine

- simulation: point source
- Angular Resolution Measure: ARM = $\Theta_{compton} \Theta_{geom}$
- Ocompton from Compton kinematics
- ► ⊖geom from (known) geometrical source

J. Krimmer (IPNL) A Compton Camera for Medical Applications based on SSD and Scintillation Detectors NDIP 2014

9

Compton camera scatter detector realization (2)

Photo of the DAQ card which will compose plans of the silicon scatter detector

M. DAHOUMANE - CP pôle MICRHAU @ Lyon - March 26th , 2015

Data acquisition

- 400 channels (absorber), 1000 channels (Si)
- Trigger rate ~ 10⁵ coinc/s

acquisition diagram

[C. Abellan ICTR-PHE 2014]

μ -TCA crate

AMC board (CPPM)

Concluding remarks

- 10^9 incident neutrons/cm²/s $\rightarrow \sim 10^9 \gamma$ emitted in 4π /s
- ¹⁰B monitoring: high resolution needed
 - CdTe, HPGe or LaBr materials are preferred to differenciate 478keV and 511 keV
 - High count rates: **3D quantitative imaging of the dose during the treatment**
 - Spatial resolution < 1 cm
- ¹⁵⁷Cd monitoring
 - Energy resolution less crucial → Compton camera could be adapted (energy and spatial resolutions OK)
 - Control of the position of the deposited dose (not quantitative?)
- More simulations are required
 - 2D collimation solution
 - Geometry optimization
 - Neutron backround
- Background issue
 - No rejection : bottleneck?