

ESCUELA DE CIENCIA Y TECNOLOGÍA

AB-NCT projects worldwide and in particular in Argentina

M.Baldo¹, J.Bergueiro¹, A.Bertolo¹, N.Canepa¹, M.E.Capoulat¹⁻³, D.Cartelli¹⁻³, M.F. del Grosso¹⁻², J.Erhardt¹, L.Gagetti¹⁻³, M.Igarzabal¹, D.Mercuri¹, D.M.Minsky¹⁻³, J.Padulo¹, N. Real¹, J.C.Suárez Sandín¹, M. Suárez Anzorena¹, A.A.Valda^{1,2}, M.E.Debray^{1,2}, H.R.Somacal^{1,2}, M.S.Herrera¹⁻³, G.Conti¹, M.Gun⁴, H.Tacca⁴, J.H.Melillo, M.Nolasco, **A.J.Kreiner¹⁻³**.

¹Department of Accelerator Technology and Applications, CNEA; ²ECyT-UNSAM; ³CONICET; ⁴Faculty of Engineering, UBA. Workshop on AB-NCT, Oct 15-16, Grenoble, France.

• AB-NCT Accelerator Programs Worldwide.

• Program in Argentina: Development of an <u>Electro-Static-Quadrupole (ESQ)</u> accelerator-based facility and other accelerator types.

• Conclusions/remarks.

Quest for "best" solutions. Criteria for widest possible dissemination:

- Safety
- Simplicity
- Lowest possible cost

Neutron producing reactions

Kononov V et al. NIM. A (2006)

Active AB-BNCT Programs worldwide

- 1. Russia: BINP, Novosibirsk .
- 2. UK: Birmingham.
- 3. Italy: LNL & Padova & Pavia, INFN.
- 4. Japan (x7 ?): Kyoto; Tsukuba; National Cancer Center-Tokyo; Osaka/Tohoku;..
- 5. Israel: Soreq-SARAF.
- 6. Argentina: CNEA. 7. France?

Accelerators for BNCTworldwide

Location	Machine (Status)	Target & reaction	Beam energy Neutron energy (MeV)	Beam current (mA)
Budker Institute Russia	Vacuum insulated Tandem (Under dev.)	Solid ⁷ Li(p,n)	2.0 < 1 MeV	2
Birmingham University UK	Dynamitron (Ready, but to be upgraded)	Solid ⁷ Li(p,n)	2.8 < 1 MeV	1-2
KURRI Japan	Cyclotron (Completed, clinical trials started)	Be(p,n)	30 up to 28 MeV	1
SARAF Israel	RFQ-DTL (Ready)	Liq. ⁷ Li(p,n)	up to 4	1-2
Legnaro INFN Italy	RFQ (Under construc- tion, well advanced)	Be(p,n)	4-5 up to 2-3 MeV	30
Tsukuba Japan	RFQ-DTL (Under construction, adv.)	Be(p,n)	8 up to 6.1 MeV	10
CNEA Buenos Aires Argentina	Single ended ESQ Tandem Electrostatic Quadrupole (TESQ) (Under construction)	Be(d,n) Solid ⁷ Li(p,n)	1.45 69% (0°)< 1MeV (5.7) 1.9-2.3 < 1 MeV	30 30
NCCenter, CICS, Janan	RFQ (Under development)	Solid ⁷ Li(p,n)	2.5 < 1 MeV	20

Nuclear reactions & material properties

Reaction	E _{thres} (MeV)	Radioactive products	Melting T (°C)	Therm cond (W/m-K)
⁷ Li(p,n) ⁷ Be	1.88	Yes	180	84.7
⁹ Be(p,n) ⁹ B	2.06	No ^a	1287	190
⁹ Be(d,n) ¹⁰ B	0 (exoergic)	No	1287	190
⁹ Be(d,n) ¹⁰ B*	≈1.0 ^b	No	1287	190

^aVery short lived activity with no gamma emission.

^bPopulation of excited states at ≈ 5.1 MeV in ¹⁰B. The reaction for population of these states has an effective threshold of ≈ 1 MeV.

<u>Reminder</u>: Coulomb barriers of protons on common structural materials, Fe and Cu \approx 5 MeV. Activation threshold for neutrons \approx 6 MeV.

Neutron **Production target** and Beam **Shaping Assembly**

Accelerator tubes with Quadrupoles

Ion Sources

- Mechanical design and construction.
 J.C. Suárez Sandín, M. Igarzábal, J.Erhardt, G. Conti, et al.
- 2. Electronic/electromechanical design: High voltage supplies, transformers, ..: <u>M. Baldo, D. Mercuri, N. Real, M. Gun</u> et al.
- 3. Electrostatics, column, tubes y ion optics (transport of high intensity beams): D. Cartelli, N. Cánepa et al.
- 4. Cooling systems: J.C. Suárez S., M. Igarzábal, et al.
- **5. Vacuum systems: <u>M.E.Debray</u>**, <u>J.C. Suarez Sandín, M. Igarzábal</u>, et al.
- 6. Ion sources: <u>J. Bergueiro, H.Somacal</u>, J.C.Su<u>á</u>rez Sandín, M. Igarz<u>á</u>bal et al.

Working areas (Cont.)

- 7. Neutron production targets (neutronics), epithermalization Beam Shaping Assembly, patient treatment room: <u>M.E. Capoulat, D.Minsky, A.A.</u> <u>Valda, et al.</u>
- 8. High power neutron production targets (thermomechanical aspects and materials science and technology issues): <u>L. Gagetti, M. Suarez Anzorena, M.</u> <u>del Grosso, A. Bertolo, J.C. Suarez Sandin</u> et al.
- 9. Control sysytems: <u>J. Padulo, M. Baldo et al</u>.

Working areas (Cont.)

- 10. Licensing of facility: <u>M.E. Capoulat, A. A.Valda, et</u> al.
- 11. Treatment planning: <u>M. Herrera, S. J. Gonzalez</u>, <u>M.E.Capoulat, D.M. Minsky</u>, et al.
- 12. Development of a SPECT (Single Photon Emission Computed Tomography) : <u>D.M. Minsky, A.A.Valda</u> et al.

<u>A comprehensive study on ⁹Be(d,n)¹⁰B-</u> <u>based neutron sources for deep tumor</u> <u>treatment.</u> (Next talk)

Computational assessment of deep-seated tumor treatment capability of the ⁹Be(d,n)¹⁰B reaction for AB-BNCT, Physica Medica (Europ. Journal Med. Phys.), 30 (2014) 133-146.

M.E. Capoulat, D.M. Minsky, and A.J.Kreiner

PhD Thesis M. E. Capoulat, March 2014.

SEM images of Be deposits on different substrates.

Substrate: Tungsten Thickness: 10 µm Substrate: Molibdenum Midlayer: 0.5 μm Ag Thickness: 10 μm Substrate: Molibdenum Midlayer: 0.5 μm Ag Thickness: 10 μm

<u>Neutron production targets:</u> <u>microchannel prototype</u>

Simulación de la velocidad del fluido en el prototipo. Fluid dynamics simulations

Simulación de la temperatura del prototipo.

Temperature simulations

Experimental validation of simulations

Analyzing the performance of accelerators in BNCT: evaluation of the therapeutic potential of the proposed facility and its comparison with global benchmark clinical beams

M.S. Herrera, S.J. González, W.S. Kiger III, H. Kumada, A.J. K.

- ⁷Li(p,n): GBM, Head & Neck, Nodular Melanoma in extremities (Herrera et al., Physica Medica, EJMP, 272 (2013))
- ⁹Be(d,n): GBM (Capoulat et al., Proceedings of 15-ICNCT, ARI).
- <u>Conclusions</u>: Equal quality treatment to best existing reactor.

Development of an Electrostatic -Quadrupole Accelerator (ESQ) Facility for BNCT

"A Tandem-ESQ for Accelerator-Based Boron Neutron Capture Therapy", Kreiner, A. J. et al, NIM B261 (<u>2007</u>) 751-754.

Appl. Rad. & Isotopes: 67 (2009)S266-S269 ; 69(12) (2011) 1672–1675; 88(2014)185.

Different accelerators under development

200 kV Accelerator

r 720 kV Tandem Accelerator Also single-ended Also single-ended

200 kV accel mounted with Faraday cage

D. Cartelli & N. Canepa: Mounting the tubes

Accelerator tubes in place and tested

Accelerator with all systems mounted (HV, cooling, vacuum, control)

Accelerator column with tubes under vacuum

Neutron production target (cooled)

Control system, test stand and accelerator

Control interface: Javier Padulo et al

Control and monitoring system

Accelerator tubes with quadrupoles

100 kV tubes, assembled and tested: M. Igarzabal, J.M.Kesque, D.Cartelli

Before assembling the quads

Quads assembled

Centering the quads inside tube

Matching section being assembled

Tube with MS next to accelerator

Watching into accel tube with quads

Watching along the matching axis

Lifting MS and tube into accelerator

Ion Optics (high intensity selfconsistent beam transport, space charge effects):

Daniel Cartelli, N. Cánepa et al.

Proton beam transport (30 mA)

Ion sources, injector, test stand and accelerator

<u>J. Bergueiro</u>, H.Somacal, M.Igarzabal, J.C.Suarez Sandin, et al.

New high power ion source: ready

Ion source test stand (40 kV)

Ion source test stand with quadrupole doublet- 40 kV

30 mA proton beam

Beam shape analysis through induced fluorescence in residual gas

9.5 mA, Radius=3.5 mm; Emittance_N=0.38 π mm mrad

20.3 mA, Radius=6.3 mm; Emittan_N= 1.36 π mm mrad

30 mA beam propagating thru a quadrupole doublet in test stand (40 kV) into a FC

First beam propagating through the 200 kV

accelerator (2 mA)

Beam images along the tube

5-10 mA, View of lower chamber (05-09)

5-10 mA, view of upper chamber (05-09)

High voltage supplies: M. Baldo, D. Mercuri, N. Real.

720 kV machine being assembled: **Juan Carlos Suarez** Sandin, M. Igarzabal, J. Erhardt, G. Conti

New Lab & BCNT Centre (CNEA)

Front view of new Centre

FACHADA PRINCIPAL V1 ESCALA 1:75

Breaking the ground...

CONCLUSIONS/REMARKS

- The era of in-hospital neutron sources has started. <u>Worldwide effort</u>: a variety of different accelerators and nuclear reactions are being evaluated. So relative merits and costs may be compared. As good as best reactor.
- The suitability of ⁹Be(d,n)¹⁰B @ 1.45 MeV as an epithermal/thermal neutron source has been demonstrated. The technology is well advanced.
- 0.2 MV ESQ accelerator ready. In-air folded 0.72 MV Tandem ESQ (TESQ) is being built. Other options (single ended 1.4 MV and 1.4 MV Tandem) are also being pursued.