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Accelerator-Based BNCT

Nuclear reactions and material properties

Reaction Proton or Neutron Yield Average neutron Radioactive Target Properties:
deut. energy [n/mC] energy products Melting T [Thermal Cond.]

’Li(p,n)’Be 2.5 MeV 8.9 x 1011 0.33 MeV Yes * 180°C [84.7 W/mK]
[Thres: 1.88]

’Li(p,n)’Be 1.95 MeV 2.9 x 1010 0.04 MeV Yes * 180°C [84.7 W/mK]

“Near Threshold”

°Be(p,n)°B 4.0 MeV 1.0 x 1012 1.5 MeV No** 12872C [190 W/mK]
[Thres: 2.06]

°Be(d,n)1°B 1.5 MeV 1.6 x 1011 1.7 MeV No 1287°C [190 W/mK]

[exoergic]
* 53 day radioactivity from 7Be ** Very short lived with no gamma emission

Advantages of °Be(d,n)!’B:

v No residual radioactivity
v' Less difficulties related to power dissipation and stability.
v Lower bombarding energy



The “Be(d,n)''B reaction

Neutron spectrum & population of 1°B

Exothermic, Q=4.36 MeV

Even at low deuteron energies, the residual °B may be left in any of the excited states, leading to a
neutron spectrum with several “monoenergetic” peaks.

For deuteron energies < 500 keV only the ground and first four excited states are accessible.
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The “Be(d,n)''B reaction

Neutron spectrum & population of 1°B

Population of 6" , 7th and 8t excited states (at = 5.1 MeV) in 1°B:

* These states are preferentially populated as they are accessible (Bonner and Buttler, 1959).
* For these states, the reaction has an effective threshold of =1 MeV.

« Mainly decay by alpha emission to °Li (ground state)
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The *Be(d,n)!'B reaction

Thin vs. Thick targets

“Thick” target “Thin” Target
A deuteron looses all its energy in the A deuteron looses only part of its
target energy in the target.

All deuterons leave

the target with
E>1MeV
Q— e—
Many reactions take place at an energy All reactions take place at an energy
lower than the 1 MeV threshold, larger than 1 MeV
producing high energy neutrons (i.e., in the regime where the 5 MeV

states are preferentially populated!)

A “thin” target allows us to eliminate a significant part of the more energetic neutrons



The *Be(d,n)!’B reaction

Thin vs. Thick targets

Capoulat et al., PoS XLASNPA (2014)

1
Example: 103

—e— Thick target
Deuterons of 1.45 MeV ] —o— 8 um-thick target

Thickness of Be: 8 microns
Residual Energy

E =1.05 MeV
e || |-e.

4

Yield (10" n.mC ".MeV™")

Neutron Energy (MeV)

All reactions which would take place at E< 1 MeV are eliminated,
i.e., many of the more energetic neutrons are not produced.




Softening the primary spectrum

Why is it important?

Ideal Spectrum

Ideal spectrum
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In BNCT neutrons are classified according to
the energy as:

Thermal <0.5eV
Epithermal 0.5 eV-10 keV
Fast >10 keV
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Softening the primary spectrum
Why is it important?

* Fast neutrons will produce high LET protons by the scattering in *H (present in tissues)

* Dose due to these protons is “nonspecific” (i.e., same RBE for normal and tumor tissues)
* Radiotoxicity effects.

D = wgDg + WTherDTher + Weast Dpast + W";.'DT

Dy — 10B(n,a)’Li — This is the only “selective” contribution to the total dose

Deact —> elastic scattering on hydrogen H(n,n)'H — Non selective

Diher —> neutron capture on nitrogen *N(n,p)1*C — Non selective

Dy — Mainly due to radiactive capture on hydrogen 'H(n,y) and a less important contribution due to

gamma emissions from the target °Be(d,n)1°B* and gamma rays produced in the beam shaping process

— Non selective

Table 1
Radiobiological weighting factors for each tissue.

Weighting factor Skin  Skull Healthy brain Brain tumor

CBE: wp 25 1.3 1.3 3.8
RBE'S:  Wrher 32 32 3.2 32
Wiast 32 32 3.2 3.2

Wy 1.0 1.0 1.0 1.0




Beam Shaping Assembly (BSA)

Design

Obijetives:

* Obtain an epithermal beam.

* Maximize the neutron flux in the patient direction.
* Provide shielding

Lithium
Polyethylene
]

Gamma
Shield

Lead

Target

Deuteron Beam

AlF
Al

Moderator materials:
Al, fluorated compounds, Fluental ®, PTFE

Thermal neutron filtering:
Materials enriched in °Li or °B

Shielding for fast neutrons:
Hydrogen, polyethylene, Lithiated polyethylene,
Borated paraffin.

Neutron Reflector:
Lead, Graphite

Gamma Shielding:
High Z materials, Lead



Beam Shaping Assembly (BSA)

Optimization
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Beam Shaping Assembly (BSA)

Optimization results (1): Tumor Dose

Beam current: 30 mA
Deuteron energy: 1.45 MeV
Target thickness: 8 micron

Dose prescription:
Peak dose to normal brain = 11.0 Gy-Eq

Peak Dose to Tumor:

= 1 Fraction (60 min.): 49 Gy-Eq
= 2 Fractions (2x60 min.): 55 Gy-Eq

= “Optimal condition”: 59 Gy-Eq
in a total irradiation time of ~180 min

Peak Dose to normal tissues:

» Peak dose to normal brainis 11.0 Gy-Eq
according the adopted prescription.

» Peak dose to skin is about 15 Gy-Eq for
all configurations.

Dose (Gy-Eq)
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Beam Shaping Assembly (BSA)

Optimization results (Il): Tratable Range

Length optimization. CS: 42x42 cm? (fixed)

Beam current: 30 mA 6
Deuteron energy: 1.45 MeV _
Target thickness: 8 micron . IO
Dose prescription: | e’
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decreases with the treatment time (i.e., with Treatment time (min.)
the moderator) due to a higher thermal
contribution in the neutron spectrum.



“Best” irradiation conditions:

180-220 min. irradiation time (i.e., moderator lengths
from 70 to 74 cm)

Also note that a 2-hour irradiation allows working quite near
the “best condition”, in a much more clinically manageable
irradiation time.

Fractionated BNCT:

The “best condition” involves too long irradiation times for a
single application.

Fractionated schemes come up with a solution.
Fractionated BNCT allows:

» To increase total tumor doses without increasing doses
in normal tissues (i.e., best tumor/ normal tissue dose ratio)

= To maximize treatable depths.
» To significantly reduce fast dose to normal tissues

» Toincrease “specific’ dose (boron) in tumor (absolute
and relative values)

Total Dose (Gy-Eq)
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A more realistic case ...

Preliminary results

NCTPlan (MCNP-Based Treatment Planning Tool)

Voxel model of a patient’s head (11025 voxels of 1 cm3)

Diagnostic: Glioblastoma Multiforme (GBM)

Size and localization: 4.2 cm3, Occipital Lobe

Irradiation conditions: Single Field, posterior-anterior
direction (not optimized)

= Dose prescription: 11.0 Gy-Eq (Peak dose normal brain)

Tissue RBE CBE 10
Gamma Thermal/Fast Boron uptake
1 3.0 2.5 1.5

Skin
Brain 1 3.2 1.3 1.0
Tumor 1 3.2 3.8 3.5

Table 1: Adopted Radiobiological Effectivenesses (RBE), Compound
Biological Effectiveness (CBE) and 1°B concentration in different tissues
(relative to blood) Boron uptake in blood was taken as 15 ppm.

Herrera, M. et al., PoS XLASNPA (2014)

Beam current: 30 mA

Deuteron energy: 1.45 MeV
Target thickness: 8 micron

Dose prescription:
Peak dose to normal brain = 11.0 Gy-Eq

Cortes x-z

v-1.+



A more realistic case ...
Preliminary results

Herrera, M. et al., PoS XLASNPA (2014)

Tumor (Gy-Eq) Normal Brain (Gy-Eq) Skin (Gy-Eq)

Beryllium 60.4 31.5 42.0 47.2 11.0 15.4
Lithium 35.1 37.0 45.0 51.8 0.5 34 11.0 0.2 2.3 13.0
Reference * 45-65 19.8-32.3 - 47.6-64.4 ---- 1.9-2.6 10.5-13.8 - 10-16

* Clinical trials at Brookhaven Medical Research Reactor (10 GBM patients) (Chadha, Int. J. Radiat. Oncol. Phys.,1998)
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A more realistic case ...

Preliminary results

Tumor (Gy-Eq) Normal Brain (Gy-Eq) Skin (Gy-Eq)

Beryllium 60.4 31.5 42.0 47.2 11.0 15.4
Lithium 35.1 37.0 45.0 51.8 0.5 34 11.0 0.2 2.3 13.0
Reference * 45-65 19.8-32.3 - 47.6-64.4 ---- 1.9-2.6 10.5-13.8 - 10-16

* Clinical trials at Brookhaven Medical Research Reactor (10 GBM patients) (Chadha, Int. J. Radiat. Oncol. Phys.,1998)

Primary neutron spectra Neutron spectra at the beam port
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Final remarks

= A neutron source based on the °Be(d,n)!°B reaction was evaluated as an epithermal neutron source
for brain tumor treatments through AB-BNCT

= |[n particular, the usefulness of a thin target was evaluated.

= Good treatment qualities (comparable to other neutron sources: nuclear reactors, “Li(p,n) reaction)
are feasible through the following configuration:

Beam current: 30 mA

Deuteron energy: 1.45 MeV
Target thickness: 8 micron

= An additional experiment has been recently carried out (Sept. 2015) which is qualitatively consistent
with the data used so far.
Collaboration CNEA (Argentina) — LPSC Grenoble (France) — LNL (ltaly) — University of Seville (Spain).



