

Bilan et perspectives « Chimie MSFR » des projets NEEDS et SAMOFAR

Sylvie Delpech, David Rodrigues, Gabriela Duran

NEEDS, SAMOFAR, SOLVAY, GEN IV

Bilan global: $2LnF_3 + 3H_2O \rightarrow Ln_2O_3 + 6HF$

PRINCIPE DU RETRAITEMENT: MODIFICATIONS DES DEGRÉS D'OXYDATION PAR MODIFICATION DU POTENTIEL REDOX

DÉTERMINATION DU COEFFICIENT D'ACTIVITÉ DE ThF₄

Mesures électrochimiques – potentiométriques dans LiCl-KCl du système ThF₄/Th en milieu chlorure en présence de concentrations croissantes en ions fluorures

L'écart de potentiel est directement lié à la complexation du Th(IV) par les ions fluorures

DÉTERMINATION DU COEFFICIENT D'ACTIVITÉ DE ThF₄

Détermination du coefficient de complexation de ThF₄ par simulation

PRINCIPAUX RÉSULTATS SUR LES ÉTUDES DE SOLVATATION

Détermination du coefficient d'activité de ThF₄ dans LiF-ThF₄ en fonction de la composition du sel à 600°C.

Détermination de l'activité des ions fluorures dans LiF-ThF₄ en fonction de la composition du sel.

→ Méthodologie pour déterminer les coefficients d'activité de tous les éléments dans LiF-ThF₄ sous réserve que leur potentiel redox soit compris dans les limites du domaine d'électroactivité du solvant (thèse D. Rodrigues)

Principe

PRINCIPAUX RESULTATS SUR LES ÉTUDES DE L'EXTRACTION REDUCTRICE

Dans le cas du traitement du combustible MSFR:

 $MF_x + xLi_{Bi} \leftrightarrow M_{Bi} + xLiF$

MF_x

Bismuth liquide + Lithium

Μ

La sélectivité et l'efficacité de l'extraction sont régies par la quantité de Li dans le Bi (potentiel redox).

• Etape n°1: Préparer les nappes métalliques liquides de Bi-Li de composition pré-définies *Préparation par électrolyse du sel fondu LiCl-LiF (70-30 mol%) à 550°C*

La simulation de la courbe E = f(t) montre une cinétique rapide de réduction de Li⁺ dans Bi

• Bi-Li (10 mol%) // LiF-ThF₄-UF₄-NdF₃ (≈ 77-23-0,2-0,1 mol%)

L'efficacité d'extraction tend vers une constante après 100 minutes.

Efficacités faibles.

Réduction simultanée du thorium dans le bismuth mais sa solubilité est faible (< 1 mol%)

Probablement formation d'un composé inter-métallique Bi-Th qui bloque l'interface

• Modification des conditions expérimentales – extraction multi-étages

Pas de modification de l'efficacité. Grande reproductibilité des résultats. Extraction limitée par une étape cinétiquement lente.

• Extraction par électrolyse de LiF-ThF₄-NdF₃ sur Bi liquide à courant imposé

L'analyse des courbes E = f(t) enregistrées pour différents courants imposés et les analyses ICP-AES analysis de la nappe de Bi après chaque électrolyse permet de construire une courbe i-E stationnaire pour les 3 éléments, Li, Th et Nd.

La relation de Nernst n'est pas en accord avec les courbes → limitation cinétique

La quantité de Nd extrait dépend du potentiel imposé et du temps d'électrolyse.

N (Nd extracted) = I (Nd)*t/3F

Après 60 mn, efficacité = 1.5%

Electrolyse: option pour le procédé d'extraction

SAMOFAR - WP5 CNRS- CEA- JRC-ITU - CINVESTAV

D5.1 (T0+20) Nuclide inventory at various stages in the chemical plant (R/CO)

Content: Kinetic results of actinide and lanthanide extraction, activity coefficients in LiF-ThF₄ and Bi-Li, Fluorination efficiency of uranium and other fission products and separation on NaF traps (based on bibliographic analysis of ORNL results), Nuclide inventory

D5.2 (T0+30) Description of the chemical plant required for MSFR fuel reprocessing (R/CO) Content: Neutronic/reprocessing coupling: fuel salt purity level determination

D5.3 (T0+36) Safety issues of the chemical plant (heat, criticality) (R/CO) (all) Content: Radioprotection for chemical plant

D5.4 (T0+46) Material issues of the chemical plant (R/CO)

Content: Chemical corrosion of Ni alloy coated with ZrO_2 in active and non-active fluoride molten salt, Mechanical resistance of Ni alloys coated with ZrO_2 by DIC, Mo resistance in liquid Bi and fluoride molten salt, Results obtained by collaboration with ROSATOM.

D5.5 (T0+46) Database of activity coefficients in LiF-ThF₄ and Bi-Li phases (R/CO)

THANKS FOR YOUR ATTENTION

PRINCIPAUX RESULTATS SUR LES ÉTUDES DE MATÉRIAUX (SAMOFAR)

- Pour les études de corrosion, on doit contrôler le potentiel du sel LiF-ThF₄ en contrôlant le rapport [UF₄]/[UF₃] et si le rapport augmente ajouter un composé réducteur U.
- $3UF_4 + U \rightarrow 4UF_3$
- $E = E^{\circ} + 2,3RT/2F \log [UF_4]/[UF_3]$
- La mesure du potentiel est réalisée en utilisant une électrode de référence dynamique (développée à l'IPNO, thèse de G. Duran).
- Les matériaux sont étudiés dans des conditions contrôlées de potentiel redox.

Atelier Sûreté-MSFR (NEEDS PF Systèmes nucléaires et scénarios), Fontenay-aux-Roses, 20 Oct., 2015