

CENTRE D'ETUDE DE L'ENERGIE NUCLEAIRE

ANICCA CODE AND THE BELGIAN NUCLEAR FUEL CYCLE

TECHNICAL WORKSHOP : DYNAMIC NUCLEAR FUEL CYCLE 06-08 July, 2016

Ivan Merino Rodriguez

Contents

• ANICCA

- Introduction
- Structure
- General Input

• The Belgian Nuclear Fuel Cycle

- Introduction
- Scenarios
- Preliminary Results
- Conclusions

ANICCA

ANICCA: Introduction

- A SCK-CEN code in collaboration with an industrial partner.
- A flexible tool to simulate nuclear fuel cycle scenarios
- Material flows as "packages" between facilities.
- Each package contains:
 - Isotopic vector
 - > Amount
 - Name
- Written in Python 3

ANICCA: Introduction

The Nuclear fuel Cycle

ANICCA: Structure

ANICCA: General Input

- 1. Scenario Definition
 - Reactor history (input)
 - Time steps
 - Isotopes to track, etc.
- 2. Components
 - Mine, Reactors, Fabrication Plan, Storage, etc.
- 3. Connections
 - From -> To
- 4. Viewers
 - Package masses
 - Elements/Isotopes (Facilities, Group of Facilities)
 - Radiotoxicity, Decay heat

General input: Scenario definition

1	Scenario:	
2	title: Belgium	
3	start date: 1970	
4	file: HistoryBelgium.xls	Input file for the reactor irradiation history
5	time steps:	
6	- 150x 1 year	
7	- 50x 10 year	
8	- 10x 100 year	Numbers of steps
9	- 10x 1000 year	
10	- 10x 10000 year	
11	- 10x 100000 year	
12	nuclide data:	
13	decay: True	
14	spontaneous fission: true	Isotopes to track and options
15	<pre>cut_off_decay_time: 2 min</pre>	
16	<pre># specified_isotopes: origen</pre>	

ANICCA: Reactor Inputs

The reactor history input includes:

- Year of irradiation
- Net Power
- Burnup
- Load Factor
- Reactors commissioned
- Reactors decommissioned

This information allows an accurate estimation of:

- Fuel mass requirement
- Waste generated

- 24	A	В	С	D	E	F	G]	Ē
1	Year	NetPower	Burnup	LoadFactor	ReactorIN	ReactorOut			1
2	1975	0.392	40	0.758	1	0			
3	1976	0.395	40	0.769	0	0			
4	1977	0.395	40	0.818	0	0			
5	1978	0.395	40	0.789	0	0			
6	1979	0.395	40	0.878	0	0			
7	1980	0.395	40	0.836	0	0			
8	1981	0.395	40	0.851	0	0			
9	1982	0.395	40	0.92	0	0			
10	1983	0.393	40	0.82	0	0			
11	1984	0.393	40	0.906	0	0			
12	1985	0.392	40	0.843	0	0			
13	1986	0.392	40	0.782	0	0			
14	1987	0.4	40	0.836	0	0			
15	1988	0.4	40	0.767	0	0			
16	1989	0.4	40	0.717	0	0			
17	1990	0.4	40	0.816	0	0			
18	1991	0.4	40	0.874	0	0			
19	1992	0.4	40	0.851	0	0			
20	1993	0.4	40	0.83	0	0			_
21	1994	0.4	40	0.834	0	0			-
22	1995	0.392	40	0.813	0	0			
23	1996	0.392	40	0.92	0	0			
24	1997	0.392	40	0.907	0	0			
25	1998	0.392	40	0.959	0	0			
26	1999	0.392	40	0.931	0	0			
27	2000	0.392	40	0.948	0	0			
28	2001	0.392	40	0.919	0	0			
29	2002	0.392	40	0.95	0	0			
30	2003	0.392	40	0.881	0	0			
31	2004	0.392	40	0.868	0	0			
32	2005	0.392	40	0.892	0	0			
33	2006	0.392	40	0.903	0	0			
34	2007	0.392	40	0.882	0	0			
35	2008	0.392	40	0.781	0	0			
36	2009	0.392	40	0.837	0	0			
37	2010	0.433	40	0.897	0	0			
38	2011	0.433	40	0.878	0	0			
39	2012	0.433	40	0.906	0	0			
40	2013	0.433	40	0.978	0	0			
41	2014	0.433	40	0.938	0	1			-
	4 6 6	I D1 /	22 / 22					N 17	

- Components = Nuclear facilities
- They execute their activities in states
 - State 1: Burning UOX for 10 years
 - State 2 : Burning UOX (70%) and MOX (30%) for 20 years
 - Decommissioning
- States can perform different processes at the same time
 Process 1: UOX irradiation
 - Process 2: MOX irradiation

1	ReproPlant: Poprococcing Plant
2	type: Facility
3	time: 1990
4	state_order:
5	- reproformox
6	- decommission
7	reproformox:
8	type: state
9	duration: 10 years
10	processes:
11	UOX:
12	type: Reprocess
13	process_order: 'LIFO'
14	releases: purex
15	Material_in: Material to reprocess and mass(es)
16	UOX_33_SPENT: 68
17	Material_out:
18	
19	\sim Material-Out and efficiencies
20	
22	WASTE HOVI: W
22	SM HOX1: structural material
24	cucle: 1 year
25	residence times:
26	U: 0 year
27	PU: 0 vear
28	WASTE UOX1: 0 year
29	SM UOX1: 0 year
30	decommission:
31	type: state
32	duration: 0 years
33	tags:
34	- ReproPlant
35	- BELGIUM

General input: Viewers

Viewers output: Packages

Example: Packages and amounts in components

	Α	В	С	D	E	F	G	Н		J	K	L	М
1		Depu (tons)	Mox (tons)	Mox_spent (tons)	Nat (tons)	Pu (tons)	Sm_uox1 (tons)	U (tons)	Uox_33 (tons)	Uox_33_spent (tons)	Uox_45 (tons)	Uox_45_spent (tons)	Waste_uox1 (tons)
2	1971	0	0	0	0	0	0	C	0	0	0	0	0
3	1972	0	0	0	0	0	0	C	0	0	0	0	0
4	1973	0	0	0	0	0	0	C	0	0	0	0	0
5	1974	1390.3	0	0	0	0	0	C	151.2	0	0	0	0
6	1975	1664.7	0	0	0	0	0	C	181.0	0	0	0	0
7	1976	1989.0	0	0	0	0	0	C	180.1	36.2	0	0	0
8	1977	2330.4	0	0	0	0	0	C	187.4	66.0	0	0	0
9	1978	2641.6	0	0	0	0	0	C	186.0	101.3	0	0	0
10	1979	2982.3	0	0	0	0	0	C	185.9	138.4	0	0	0
11	1980	3333.9	0	0	0	0	0	C	190.3	172.3	0	0	0
12	1981	4243.5	0	0	0	0	0	C	190.6	209.3	72.7	0	0
13	1982	5264.1	0	0	0	0	0	C	185.9	247.6	164.2	0	0
14	1983	5925.5	0	0	0	0	0	C	187.3	284.9	183.6	19.7	0
15	1984	7128.7	0	C	0	0	0	C	190.7	318.4	256.4	57.9	0
16	1985	8414.6	0	C	0	0	0	C	180.1	357.2	349.2	97.0	0
17	1986	9359.2	0	C	0	0	0	C	183.5	394.1	366.9	153.0	0
18	1987	10316.4	0	C	0	0	0	C	192.6	422.3	368.4	230.5	0
19	1988	11235.8	0	C	0	0	0	C	188.3	462.7	370.3	304.1	0
20	1989	12187.1	0	C	0	0	0	C	187.1	499.9	370.9	383.1	0
21	1990	13144.1	0	0	0	0	0	C	188.7	535.9	373.8	458.7	0
22	1991	14110.6	0	C	0	0	0	C	190.2	572.0	374.0	538.2	0
23	1992	15057.4	0	C	0	0	0	C	193.9	609.6	368.4	616.7	0
24	1993	15978.7	0	C	0	0.721	20.01	63.30	195.9	580.2	360.2	696.5	0.2
25	1994	16859.2	5.89	0	0	0.988	40.01	126.60	190.3	554.5	358.9	769.3	0.4
26	1995	17786.0	12.10	0	0	1.236	60.02	189.91	192.2	527.1	358.1	840.9	0.6
27	1996	18792.1	12.53	5.89	0	1.476	80.02	253.21	200.3	495.8	364.8	912.5	0.8
28	1997	19775.9	12.93	12.10	0	1.694	100.03	316.51	201.7	470.3	370.4	983.3	1.0
29	1998	20813.7	13.52	18.42	0	1.895	120.03	379.81	200.4	447.1	376.1	1061.6	1.1
30	1999	21842.9	13.37	25.04	0	2.135	140.04	443.11	203.9	423.0	377.8	1138.0	1.3
31	2000	22827.5	12.79	31.94	0	2.382	160.04	506.42	203.0	398.5	372.0	1221.9	1.5
32	2001	23832.1	12.86	38.41	0	2.620	180.05	569.72	198.6	377.9	374.0	1300.1	1.7
33	2002	24843.0	13.07	44.73	0	2.861	200.05	633.02	201.4	352.5	374.2	1378.2	1.8
34	2003	25842.4	13.48	51.26	0	2.326	200.05	633.02	200.6	394.5	374.5	1458.4	1.8
35	2004	26851.5	13.65	57.80	0	1.810	200.05	633.02	198.1	438.9	377.2	1536.6	1.8
36	2005	27852.4	13.00	64.75	0	1.324	200.05	633.02	202.9	480.1	371.6	1617.1	1.8
27	2000	DEL CTUM	42 00		A RoproDi			C22.05		C00.0	770 2	4000.0	10
14 4	- P PI		rauficación /	MINAS / REACTON	керторы	INTE Z U_INTRA	s 🗸 U_mme 🖉 ঝ						III

THE BELGIAN NUCLEAR FUEL CYCLE

Belgian Fuel Cycle: Introduction

- 7 commercial PWR
- Operating since 1975
- Reactors will be working until 2025.
- The different fuels involved in the cycle so far have been grouped into three representative PWR types: UO2_40, UO2_50 and MOX.

NPP	Operati	ion time	Power (MWe)	Power (MWth)
Doel 1	1975	2015	433	1311
Doel 2	1975	2015	433	1311
Doel 3	1982	2022	1006	3054
Doel 4	1985	2025	1033	2988
Tihange 1	1975	2015	962	2873
Tihange 2	1982	2022	1008	3065
Tihange 3	1985	2025	1046	3000
EFIT	2045	2093	128	400

Reactor Features

NPP	Average Burnup (GWd/tHM)	Fuel type
Doel 1	40	UO ₂
Doel 2	40	UO ₂
Doel 3	50	UO ₂ /MOX
Doel 4	50	UO ₂
Tihange 1	40	UO ₂
Tihange 2	50	UO ₂ /MOX
Tihange 3	50	UO ₂
EFIT	130	Pu+MA

Fuels

Belgian Fuel Cycle: Scenarios

1. Phase-out scenario (P-O):

- All reactors will operate for a lifespan of 40 years
- No new nuclear power plants.
- The total electricity generated will be 1664 TWhe.
- 670 tHM of SF are reprocessed .

2. ADS scenario (EFIT):

- Extension of the P-O scenario.
- It includes an ADS (20 years after the shutdown of all the PWRs)
- The total electricity generated will be around 1718 TWhe.

Belgian Fuel Cycle: Results

2001

2002

2003

2004

2005

8.00%

8.10%

8.16%

8.22%

8.28%

92.00%

91.90%

91.84%

91.78%

91.72%

(*) Second meeting of the Contracting Parties to the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. Belgium, May 2006

2070

Year

2080

Δ

2050

2060

0

2040

2090

Results: EFIT Transmutation Performance

- Full core discharged every 6 years (8 cycles)
- MA burning according to the reference (*)
- No Pu consumption (small production)

Transmutation performance

(*) C. Artioli et all, "Optimization of the Minor Actinides transmutation in ADS: The European Facility for Industrial Transmutation EFIT-Pb Concept". Eighth International Topical Meeting on Nuclear Applications and Utilization of Accelerators. Idhao, USA, July 2007

Results: TRU Evolution

- A MA reduction of about 45% is reached by transmutation
- Pu amount "constant"

Np, Am, and Cm(x10) evolution

Results: Back-End

- Separated Material at EOC is not considered waste.
- Number of canisters by post processing based on Red Impact (*).
 - 4 SF-UOX
 - 1 SF-MOX
 - 3 Glasses (FP+ losses = 60 kg each)

Material to store in the Final Disposal

Scenario	P-O	ADS				
Spent Fuel						
ADS SF (t)	-	-				
MOX SF (t)	66	-				
UOX_40 SF (t)	1020	-				
UOX_50 SF (t)	3315	-				
HLW						
ADS HLW (t)	-	5.1				
MOX HLW (t)	-	2.5				
UOX HLW (t)	17.2	154.5				
Packages to manage						
SF (assemblies)	9560	-				
HLW (vitrified waste)	292	2700				
Structural Material (canisters)	500	3888				
Final Disposal						
Volume for SF & HLW (m3)	6930	2610				
Volume Structural Material (m3)	100	778				

Separated material at EOC

Material	P-O	ADS
DepU	39988	39988
RepU	650	4785
Pu	2.1**	50.6
MA	-	6.3

(**) Pu available = 0

(*)*RED-IMPACT Synthesis Report.* ISBN 978-3-89336-538-8. FZJ, Germany (2008).

Results: Radiotoxicity and Decay Heat

- Radiotoxicity and decay heat results show consistencies between values and tendencies compared to related studies [Red-Impact]
- The impact of applying a reprocessing strategy without a MA separation in the past increased the radiotoxicity of the final repository

Conclusions for the Belgian Nuclear Fuel Cycle

- ANICCA has provided answers to questions that can arise when studying a nuclear fuel cycle.
- ANICCA obtained reliable results in regards to the estimation of fuel mass and nuclear material required in the cycle (when the right assumptions are taken).
- Concerning the EFIT facility, the transmutation behaviour results are compatible with reference studies for this ADS.
- For the back-end, by applying the ADS strategy gives an important reduction (of more than 60%) of the volume compared to the reference scenario (P-O).
- Regarding the radiotoxicity and decay heat, results are also consistent with the bibliography.

Thank you for your attention