

Overview of NEA activities on Advanced Fuel Cycle Scenarios

Francisco Alvarez-Velarde

Technical Workshop on Dynamic Nuclear Fuel Cycle 6-9 July 2016

© 2016 Organisation for Economic Co-operation and Development

NEA background

Nuclear Energy Agency (NEA) is an intergovernmental agency that facilitates cooperation among countries with advanced nuclear technology infrastructures to seek excellence in nuclear safety, technology, science, environment, and law. The NEA is under the framework of the Organisation for Economic Co-operation and Development.

The NEA's mission is:

- To assist its member countries in maintaining and further developing, through international co-operation, the scientific, technological and legal bases required for a safe, environmentally friendly and economical use of nuclear energy for peaceful purposes.
- To provide authoritative assessments and to forge common understandings on key issues as input to government decisions on nuclear energy policy.
- To broader OECD policy analyses in areas such as energy and sustainable development.

Member countries

			As of N	lay 2016								
* Australia	Austria	Belgium	Canada	Czech Republic	Denmark	Finland	France					
Germany	Greece	Hungary	Iceland	Ireland	Italy	Japan	Korea					
Luxembourg	Servico Mexico	Netherlands	Norway	Poland	Portugal	Russia	Slovak Republic					
Slovenia	Spain	Sweden	Switzerland	C* Turkey	United Kingdom	United States						
	Strategic partners											
			★‡ China	() India								

The NEA's current membership consists of 31 countries in Europe, North America and the Asia-Pacific region, accounting for ~86% of the world's installed nuclear capacity (1/5 of the electricity produced in NEA countries).

NEA Committees

Working Party on Scientific Issues of the Fuel Cycle

Chair: I-S. Hwang (Korea)

Expert Group on Advanced Fuel Cycle Scenarios (AFCS)

B. Feng, ANL B. Carlier, V. Leger, AREVA D. Wojtaszek, B. Hyland, G. Edwards, CNL M. Tiphine, D. Freynet, C. Coquelet-Pascal, R. Eschbach, CEA F. Alvarez-Velarde, M. García Martínez, CIEMAT A. Brolly, EK G. Glinatsis, F. Rocchi, ENEA B. Dixon, INL A. Ohtaki, K. Ono, JAEA B. Vezzoni, F. Gabrielli, A. Rineiski, A. Schwenk-Ferrero, V. Romanello, KIT E. Malambu, SCK-CEN T. Viitanen, VTT S. Cornet, OECD/NEA

Expert Group on Advanced Fuel Cycle Scenarios (AFCS)

Objectives and achievements

- To assemble, organize and understand the scientific issues of advanced fuel cycles.
- To provide a framework for assessing specific national needs related to implementation of advanced fuel cycles.
- 12 meetings have been organised since 2010
- Two reports published:
 - Transition Towards a Sustainable Nuclear Fuel Cycle
 - Benchmark Study on Nuclear Fuel Cycle Transition Scenarios Analysis Codes
- Benchmark study on the effects of uncertainties of input parameters on nuclear fuel cycle scenarios studies (report being edited-to be published in 2016)

The Effects of the Uncertainty of Input Parameters on Nuclear Fuel Cycle Scenario Studies

© 2016 Organisation for Economic Co-operation and Development

The Effects of the Uncertainty of Input Parameters on Nuclear Fuel Cycle Scenario Studies

Sensitivity studies		PWR UOX	FR	Expected results
General scenario assump				
Total nuclear energy demand	TWh/yr	430, incr., decr.	430, incr., decr.	All
Minimum cooling time	yr	2, <mark>5</mark> , 8	<mark>2</mark> , 5, 8	SF storage and reprocessing
Fabrication time	yr	1, <mark>2</mark> , 3	1, <mark>2</mark> , 3	Fuels fabrication
Introduction date of FR	yr		year 70, <mark>year 80</mark> , year 90, year 130	All
Rate of introduction	yr		over 20 years, over 30 years, over 40 years	All

The Effects of the Uncertainty of Input Parameters on Nuclear Fuel Cycle Scenario Studies

Sensitivity studies		PWR UOX	FR	Expected results		
Reactor characteristics						
Fissile burn-up	GWd/tHM	40, 50, <mark>60</mark>	100, 115, <mark>136</mark>	U consumption, enrichment,		
Fresh fuel U-235 enrichment	%	4.95 (adjusted)				
Equivalent Pu content	%		13.8 (adjusted)	for fab., reprocessing		
Cycle length	EFPD	410 (adjusted)	340 (adjusted)			
Breeding gain	-		0.9, 1, 1.1	Pu inventory		
Reactor lifetime	yr	<mark>Infinite</mark> , 40, 60	<mark>Infinite</mark> , 40, 60	All		

The Effects of the Uncertainty of Input Parameters on Nuclear Fuel Cycle Scenario Studies

Sensitivity studies		PWR UOX	FR	Expected results		
Facilities						
First year of reprocessing	yr	35, <mark>45</mark> , 55	<mark>85</mark> , 95, 105	Storage and reprocessing		
Annual reprocessing capacity	tHM	700, <mark>850</mark> , 1000	400, <mark>600</mark> , 800	Storage and reprocessing		
Losses (U, Pu)	%	0.05, <mark>0</mark>	.1, 0.2	Waste		
Enrichment tail	%	0.15, 0.2	25, 0.35	Enrichment, U consumption		
MA recycling						
Initial MA weight content	%	-	<mark>0</mark> , 1, 2	MA storage and inventory		
Recuperation rate (MA) %		-	<mark>0</mark> , 99.9, 99	Waste		

The Effects of the Uncertainty of Input Parameters on Nuclear Fuel Cycle Scenario Studies Example Results

Tornado diagrams

$$q = \frac{p_{ref}(R_{ref} - R_s)}{R_{ref}(p_{ref} - p_s)}$$

q: SWU requirements

Sensitivity table

с —	<i>p_{ref}</i>	∂R
5 —	$\overline{R_{ref}}$	$\overline{\partial p}$

	PWR cycle			FR cycle			Reproces-		Inventory							
S	Front-end		Back- and	Fron	t-en d	Sec k- and	sing		Pu			MA				
(r ² ≥ 0,9)	Uranium	Enrichment	Fabrication	Storage	Ρn	Fabrication	Storage	PWR	FR	Plants	Reactors	Storages	Cycle	Waste	Cycle	Waste
Reactor Lifetime							?				4.4			-0.1		
	s-1															≥+1

Benchmark on TRU management scenarios

Benchmark objectives

- Compare codes and models;
- Evaluate how much of the materials in spent fuel can be burnt with different "burner fleets";
- Assess the possibility of going back to an equilibrium state after the reduction of the TRU stocks.

Expected Results

Reactors:

 Pu, Am, Np, Cm and MA contents (wt%)
 Pu, Am, Np, Cm and MA balances (kg/TWhe)

Enrichment plant:

- Natural uranium consumption (t and t/y)
- Enriched uranium need (SWU and t/y)

Fabrication and reprocessing plants:

- ➤Annual flow (t/y)
- > Pu, Am, Np, Cm annual flows (t/y)
- ➤Activities (Bq and Bq/t)
- Radiotoxicity (Sv and Sv/t)
- Decay heat (W and W/t)

Separated materials storage:

Stored mass for each separated material (t)

Material transportation:

- ≻Annual flow (t/y)
- Neutron emissions (n/s and n/s/t)
- Decay heat (W and W/t)

Disposals:

- Mass of waste (t)
- Long term radiotoxicity of waste accumulated at the end of the scenario (Sv, over 1.10⁶ years)

Inventories:

- Pu, Am, Np, Cm and MA inventories in cycle (t)
- Pu, Am, Np, Cm and MA inventories in waste (t)
- Pu, Am, Np, Cm and MA total inventories
 (t)

Benchmark study on Dose rate calculation for irradiated fuel assembly

Background:

- □ Comparative study conducted by DOE and CEA → verify gamma dose rate calculation methodology, especially for cases in which quantitative measurements of proliferation resistance are desired.
- ❑ The accepted code for dose rate calculations (Microshield) was primarily intended for shielding design, where dose <u>over</u>estimation is conservative. For self-protection calculations, dose <u>under</u>estimation is conservative.
- Preliminary calculations on 30-year aged spent fuel assemblies with updated methods and codes predicted dose rates roughly three times lower.
- Accurate predictions of this dose rate after decades of cooling depend on factors such as the assembly's power history, composition, and geometry as well as the calculated gamma source and radiation deposited on the target.
- □ In addition to <u>gamma transport calculations</u>, the <u>depletion</u>, <u>decay and</u> <u>gamma source calculation</u> approaches need to be precisely carried out.

Benchmark study on Dose rate calculation for irradiated fuel assembly

Objectives:

Verify updated dose rate calculation procedures (new modeling approaches, new nuclear data, new versions of the codes) and to share the benchmark results at the international level

Two parts:

- Verification (comparison of results with different codes/methodologies)
- Validation (comparison of results with experimental data, if available)

- 9 institutions take part in the activity (ANL, AREVA, CIEMAT, CEA, CNL, ENEA, KIT, VTT, SCK-CEN)
- Timeline: ~18 months

Conclusions

- The NEA Expert Group on Advanced Fuel Cycle Scenarios (AFCS) carries out numerous and various activities related to the aspects of the transition between a current fuel cycle scenario and an advanced one.
- It cover all aspects of the fuel cycle scenario analysis: current and advanced reactors, separation, fuel fabrication, recycling, waste management.
- International cooperation is an asset for maintaining, developing and gaining further knowledge and insights of scientific, technological and strategic issues associated to the nuclear fuel cycle.
- A framework for assessing the scientific issues of advanced fuel cycles has been successfully provided.

Thank you for your attention

 $\ensuremath{\mathbb{C}}$ 2016 Organisation for Economic Co-operation and Development