CHARACTERIZING THE UNITED STATES NUCLEAR USED FUEL INVENTORY USING THE CYCLUS FUEL CYCLE SIMULATOR ROBERT FLANAGAN (PRESENTING) CEM BAGDATLIOGLU, ERICH SCHNEIDER

Department of Mechanical Engineering University of South Carolina: Columbia

OVERVIEW

- 1. Introduction to Cyclus and Bright-lite
- 2. Introduction to the **methodology** of Bright-lite
- **3. Description** of the US fleet study
- 4. Results
- **5. Conclusions** and future work

NUCLEAR FUEL CYCLE SIMULATORS

- Nuclear fuel cycle (NFC) simulators enable the study of fuel cycle and reactor technology options by informing users on
 - future supply and demand of **materials**
 - energy production
 - waste inventories
- Higher accuracy calculations require more costly computations

CYCLUS

- Agent-based nuclear fuel cycle simulator
- Enable a broad spectrum of fuel cycle simulation while providing easy entry for new users and **agent developers**

BRIGHT-LITE

- A medium fidelity reactor modeling software used in conjunction with Cyclus.
- Can measure various reactor characteristics including; burnup, isotopic vectors, criticality, and conversion ratio (CR).

BRIGHT-LITE

- **Characteristics** of the code are:
 - Quick execution
 - Flexibility for various reactor technologies
 - Calculating necessary parameters such as discharge **burnup**
 - Tracking material **compositions**
 - Has two modes of operation
 - Forward
 - Blending

FLUENCE-BASED NEUTRON BALANCE APPROACH

- One energy group cross section libraries used to pre-calculate and parameterize burnup and transmutation calculations
- The results of these calculations are saved in isotope library <u>databases</u> for use during runtime
- Each database describes a specific reactor under specific operating conditions

FLUENCE-BASED NEUTRON BALANCE APPROACH

- Example **U-235** isotope library from a LWR reactor database
- Transmutation matrix not shown

<u>Isotope i</u>

Library

 $-P_i(F)$

 $- D_i(F)$

- B_i(F)

- m_{i.i}(F)

Isotope 1

Library

 $- P_1(F)$

- D₁(F) - B₁(F)

 $- m_{1,i}(F)$

otope Library Database A 1-group cross section set A

Isotope i+1

Library

 $- P_{i+1}(F)$

 $- D_{i+1}(F)$

- B_{i+1}(F)

 $- m_{i+1,i}(F)$

/	Vector	F ₁	F ₂	F ₃	F ₄	
	Fluence [n/cm ²]	0	2.59E+21	5.70E+21	8.81E+21	
	Neutron Prod(F) [n/s/φ/kg]	289	250	216	186	
	Neutron Dest(F) [n/s/φ/kg]	152	136	121	108	
Isotop	Burnup(F) [MWd/kg]	0	108.5	201.7	282.1	
$\frac{\text{Librar}}{P_{I}(F)}$ $- D_{I}(F)$ $- B_{I}(F)$	Y N			1.240		

(Fluence is flux integrated over time)

FLUENCE-BASED NEUTRON BALANCE APPROACH

USING COMPOSITION TO GET FUEL LIBRARY

FUEL LIBRARY

- PWR loaded with 96% U238 and 4% U235
- The neutron production rate eventually drops below the neutron destruction rate
- Burnup is found from calculating discharge fluence

FINDING DISCHARGE FLUENCE

- Core criticality cannot be sustained when production rate is lower than destruction rate
 - Fuel is discharged when k < 1
- Fuel can be discharged on other conditions such as conversion ratio and maximum fluence
- Several other factors can be considered when calculating discharge fluence.
 - Effects of structural materials on the neutron balance
 - Effect of nonleakage probability
 - Separation of fuel into batches

FORWARD MODE

Forward mode:

Given an input fuel composition vector, what will be the discharge composition and burnup?

BLENDING MODE

BLENDING MODE – BURNUP TARGET

15

CHARACTERIZING THE US FLEET

BRIGHT-LITE USED TO SIMULATE THE US NUCLEAR REACTOR FLEET FROM EARLY 1960S UNTIL 2012

DATA TAKEN FROM EIA

Data used in the study was accessed through the **U.S. Energy Information Administration (EIA)** [3][4][5]. **For each reactor** the following information was used:

> Startup date Scheduled shut down date Lifetime extension data Time dependent burnup Time dependent availability Reactor thermal power Reactor core mass

DATA TAKEN FROM EIA

Historical **burnups** for the US nuclear fleet

Historical availability of the US nuclear fleet

US FUEL CYCLE IN CYCLUS

- Each reactor was represented separately in Cyclus
- Reactors calculate the input fuel enrichment based on their burnup target at each refueling
 - Since the data contains some year-to-year volatility, the burnups were averaged over 5-year intervals to provide the data series used by Bright-lite
 - The fuel enrichments calculated by Bright-lite yield the desired burnup at the equilibrium cycle
- Bright-lite uses availability data to adjust the outage time of reactors
 - Instead of introducing arbitrary mid-cycle outages, Bright-lite simply adjusts the refueling outage times such that the trend in long-run average availability is correct

CALCULATED FUEL ENRICHMENTS

- PWR fuel enrichment is consistently higher than BWR enrichments
- Enrichment follows the increasing burnup trend
- Unfortunately, the reference does not provide enrichment data for comparison

DISCHARGE BURNUP COMPARISON

- Figure shows
 - Bright-lite PWR and BWR discharge burnup data by fuel batch
 - EIA PWR and BWR discharge burnup per reactor type
- The low burnup batches are startup batches that reside in core for fewer cycles

TOTAL URANIUM DISCHARGE PER YEAR

22

DISCHARGE COMPOSITIONS FROM BRIGHT-LITE

1000000 0.009 0.008 100000 0.007 10000 0.006 Mass (kg) 0.005 0.005 400.0 1000 0.003 100 • PWR PU/U ----- BWR Am 0.002 PWR Fissile PU/U • • -PWR Cm 10 ----- BWR Cm • BWR PU/U 0.001 -PWR Pu BWR FissilePU/U ----- BWR Pu 0 1975 1985 1965 1995 1975 1965 1985 1995 2005 2015 Year Year

Total mass of Am, Cm, and Pu

Pu and fissile Pu fractions over time

2015

2005

CONCLUSIONS

Bright-lite was used to simulate the US nuclear reactor fleet from the first reactors (early 1960s) until 2012. Discharge burnup data, grouped for BWRs and PWRs, was used to determine a target burnup for each reactor at every refueling

- The study demonstrates Bright-lite's ability to provide **medium fidelity modeling** of reactor operation within a fuel cycle simulator
- Bright-lite's ability to **dynamically determine input fuel compositions** from available feed streams which arise during the simulation allows it to accurately model changing scenarios
- Burnup trends and discharge material masses were shown to closely match the reference data. This qualitative comparison indicates good matching between Bright-lite and the actual data.

FUTURE WORK

- Acquire data on the isotopic discharge vectors for the historical U.S. fleet.
- Generation of higher fidelity pre-computed libraries for Bright-lite
 - Burnup dependent cross-sections
 - Input dependent library interpolation

REFERENCES

- 1) CNERG Fuel Cycle Group, "Cyclus," 01 01 2014. [Online]. Available: http://fuelcycle.org/. Web. 01 Jan. 2014.
- 2) "Fuel Composition Calculation Techniques of Nuclear Fuel Cycle Simulators," PHYSOR 2014, The Westin Miyako, Kyoto, Japan, 28 Sep. 03 Oct. 2014, on CD-ROM (2014)
- 3) "Table 3. Nuclear Reactor Characteristics and Operational History" *Nuclear & Uranium*. U.S. Energy Information Administration, 11 Nov. 2011. Web. 14 Dec. 2015.
- 4) "Table 1. Nuclear Reactor, State, Type, Net Capacity, Generation and Capacity Factor" *Nuclear & Uranium*. U.S. Energy Information Administration, 11 Nov. 2011. Web. 14 Dec. 2015.
- 5) "Table 3. Annual Commercial Spent Fuel Discharges and Burnup, 1968- June 30, 2013" *Spent Nuclear Fuel*. U.S. Energy Information Administration, Dec. 7 2015. Web. 14 Dec. 2015.
- 6) "Multidimensional Cross Section Library Interpolation for the Bright-lite Reactor Modeling Software," Robert Flanagan, E. Schneider, C. Bagdatlioglu; Global, 2015.
- 7) "Standard- and Extended-Burnup PWR and BWR reactor models for the ORIGEN2 Computer Code" S.B. Ludwig, J.P. Renier, Oak Ridge National Laboratory, Jan 3, 1990.
- 8) "Using Spatial Flux Calculations to Improve the Fluence-Based Neutron Balance Approach," Cem Bagdatlioglu, Erich Schneider, Robert Flanagan; ANS Annual 2015.

ADDITIONAL INFORMATION

Two Modes of operation for Bright-lite

ADDITIONAL INFORMATION

Blending mode

Bright-lite Benchmarks – EFC 33

Bright-lite Benchmarks – EFC 33

Initial loading					
Batch	Enrichment(%)				
1	1.500				
2	2.400				
3	2.950				
n>3	3.100				

Bright-lite Benchmarks – LWR VISION 51

	VISION	Bright-lite	<u>Error (%)</u>					
Enrichment	0.043*	0.043 (input)						
Equil. Burnup	51 (input)	50.02	1.92			Error (%)		
Equilibrium Output Composition (%)			า (%)	0.00	10.00	20.00	30.00	40.00
CS137	0.182	0.177	2.69	CS137				
U235	0.765	0.834	9.07	U235				
U236	0.571	0.557	2.45	U236				
U238	92.10	92.20	0.11	U238				
PU238	0.0293	0.0310	5.97	PU238				
PU239	0.615	0.595	3.27	PU239				
PU240	0.291	0.230	21.06	PU240				
PU241	0.176	0.200	13.91	PU241				
AM241	0.00644	0.00835	29.58	AM241				
AM243	0.020	0.025	23.95	AM243				

Bright-lite Benchmarks – VISION MOX-NU-Pu

	VISION	Bright-lite	<u>Error (%)</u>				
Enrichment	0.043*	0.043 (input)					
Equil. Burnup	51 (input)	50.02	1.92		Erro	r (%)	
Equilibrium Output Composition			n (%)	0.00 20.00 40.0			60.00
CS135	1.49E-03	1.11E-03	25.05	CS135			
CS137	1.87E-03	1.85E-03	1.17	CS137			
U235	1.20E-03	1.21E-03	1.40	U235			
U236	2.57E-04	2.27E-04	11.95	U236			
U238	8.67E-01	8.73E-01	0.64	U238			
PU238	2.34E-03	2.12E-03	9.53	PU238			
PU239	2.90E-02	2.48E-02	14.58	PU239			
PU240	2.28E-02	2.19E-02	4.01	PU240			
PU241	1.22E-02	1.25E-02	2.20	PU241			
AM241	1.34E-03	1.03E-03	23.43	AM241			
AM243	2.09E-03	3.14E-03	50.55	AM243			32

Bright-lite Benchmarks – VISION Fast Reactor (UOX to FR-mtl-0.25)

	<u>VISION</u>	Bright-lite	<u>Error (%)</u>					
Equil. Burnup	185.6	188.9	1.78			Erro	or (%)	
Equi	librium Out	put Composit	ion	0.0	00	5.00	10.00	15.00
CS135	8.383E-03	7.775E-03	7.25	CS135				
CS137	7.383E-03	6.619E-03	10.35	CS137				
U235	4.429E-04	4.849E-04	9.48	U235				
U236	1.777E-04	1.547E-04	12.97	U236				
U238	4.748E-01	4.863E-01	2.43	U238				
PU238	1.419E-02	1.390E-02	2.09	PU238				
PU239	1.247E-01	1.280E-01	2.70	PU239				
PU240	9.458E-02	9.136E-02	3.40	PU240				
PU241	2.281E-02	2.392E-02	4.87	PU241				
AM241	1.137E-02	1.150E-02	1.12	AM241		N EDA		
AM243	7.333E-03	7.136E-03	2.68	AM243				

TRANSIENT MOX SCENARIO USING BRIGHT-LITE AND CYCLUS

6 UOX fueled LWRs (two each w/ equil burnups of 35, 40, 45 MWd/kg) come online over 10 years All reactors have 40 year lifetimes

One MOX reactor (equil burnup of 50 MWd/kg) comes online 17 years after start of simulation Uses Pu from LWRs

DISCHARGE BURNUPS OF EACH BATCH IN SIMULATION

MOX REACTOR INPUT PLUTONIUM CONTENT & ISOTOPICS BY BATCH

INVENTORY OF PLUTONIUM IN UOX USED FUEL PLUS PLUTONIUM REPROCESSED BUT NOT YET RECYCLED

Amount (kg)