Mono-Recycling of Americium in PWR A Waiting Strategy

A.-A ZAKARI-ISSOUFOU

INSTITUT DE PHYSIQUE NUCLÉAIRE D'ORSAY

Physique de l'Aval du Cycle et de la Spallation

1

Outline

Current Fuel Cycle Management

Mono-Recycling Americium in Thermal Reactors

Impact on The Fuel Cycle

A Dynamic Fuel Cycle Study

A reference scenario

Puissance installée (GW_e)

A reference scenario

Puissance installée (GW_e)

Why?

▶ We are fanatic nuclear power believers

A.-A ZAKARI-ISSOUFOU (PACS)

A reference scenario

Puissance installée (GW_e)

Why?

- Ensure the fissile material supply
- Better management of the spent fuel (\Rightarrow closed cycle)

Current Spent Fuel Management

A technology shift : Fast Reactors, ADS

A.-A ZAKARI-ISSOUFOU (PACS)

WORKSHOP DNFC 2016 5

Thermal reactors are capable of efficiently decrease the americium produced in spent $\ensuremath{\mathsf{UOx}}$ fuels

A.-A ZAKARI-ISSOUFOU (PACS)

6

♦ Americium Disappearance ↔ Curium Production

Curium are important neutron emitters of nuclear spent fuels and impact *short time* storage and fuel management

▶
242
Cm, T $_{1/2} = 163 \text{ d}$

•
244
Cm, T_{1/2} = 18.1 y

▶
241
Am, T_{1/2} = 432.2 y

The problematic of curium and americium differs in term of time scale - after $60~{\rm y}$ of cooling Am remains the most active element of the spent fuel

1

Curium Transportation

Residual Power and Toxicity for Transportation

TN 12/2 Transport Cask

Residual Power and Toxicity for Transportation

TN 12/2 Transport Cask

- 1. Total Weight (with payload) : 111 t, 12 Spent PWR Fuel
- 2. Decay-Heat : 63.25 kW inside
- 3. Toxicity : Max 2 mSv/h @ surface

 \diamond Monte Carlo simulation of the emitted radiations from MOx/Mox(Am) spent fuels

Based on BaL PhD Work

- Decay-Heat is the most constraining parameter for spent fuels transportation
- Current standards are already high enough even for the innovative MOx(Am) fuel

Parks comparison in a steady-state configuration

▶ The transmutation behaviour is kept at park level : decreasing Am content

► The transmutation performance is being lost due to "Ice Cream" effect

A.-A ZAKARI-ISSOUFOU (PACS)

WORKSHOP DNFC 2016 9

Introduction Transmutation Consequences Dynamic

Influence of the fuel burn-up

 \diamond UOx is set at 35 GWd/t while MOx/MOx(Am) fuels can be 35 or 50 GWd/t

Introduction Transmutation Consequences Dynamic

Influence of the fuel burn-up

 \diamond UOx is set at 35 GWd/t while MOx/MOx(Am) fuels can be 35 or 50 GWd/t

Higher Burn-Up

- ▶ Tend to improve ²¹⁴Pu contribution for energy production
- Keeps the fuel for longer cycle and postpone fuel management

Conclusions

- Decreasing the americium of the spent UOx fuel alleviate the decay heat of glasses
- ▶ PWR have a good performance in term of americium transmutation in MOx(Am)
 - MOx(Am) are more toxic @fabrication and as spent fuel
 - More flexibility is earned for waste transmutation
- As a waiting strategy MOx(Am) fuels could be a good compromise

- Less radiotoxicity footprint with selective isotopic transmutation
- Evaluation with conditional transition toward fast reactors

Conclusions

- ▶ Decreasing the americium of the spent UOx fuel alleviate the decay heat of glasses
- PWR have a good p
 - MOx(Am) are
 - More flexibilit
- As a waiting strateg

ansmutation in MOx(Am) spent fuel ion compromise

- Less radiotoxicity footprint with selective isotopic transmutation
- Evaluation with conditional transition toward fast reactors