

Advanced Nuclear Fuel Cycle Code Simulator with a Full Graphical interface

Błażej Chmielarz, Wacław Gudowski, Torbjörn Bäck, Karen Atabekjan, Alan Tkaczyk

> E-mail contacts: *Blazej Chmielarz <u>blazejc@kth.se</u>* Waclaw Gudowski <u>waclaw@kth.se</u>

- 1. Introduction
- 2. Technical features
- 3. GUI
- 4. Status
- 5. Future plans

Introduction

The idea behind the program:

- -Easy to use
- –With a GUI
- -Short runtime
- -Open-source
- -Learning and educating tool

- Developed for Linux
- Written in C++
- Requires Boost, Grace and gtkmm 2.4

Solution method

- Burnup matrix, flux specific, 1307 nuclides
- Reactor timesteps: 1 day, 5 days, 30 days, 1 year
- Today's status:
 - Includes today one PWR and one BWR design
 - Fixed flux (10¹⁴ for PWR and 5*10¹³) for BWR

Input

– Scenario file

0	Start Simulation 1970-Jan-01
7	stop simulation 3000-Jan-01
8	time step 360
9	reactor time step 30
10	facility size 0.021
11	label size 0.902
12	arrow transparency 0.891
13	
14	%=====================================
15	
16	fuelfactory
17	name fuelfactory1
18	GUIposX 0.29
19	GUIposY 0.3
20	startdate 1900-Jan-01
21	stopdate 2500-Jan-01
22	fuelprovider EnrichmentPlant_1
23	tuelreceiver forsmarkl
24	tuelreceiver forsmark2
25	fuelreceiver forsmark3
26	fuelreceiver oskarshamnl
27	fuelreceiver oskarshamn2
28	tuelreceiver oskarshamn3
29	fuelreceiver ringhalsi
30	Tuelreceiver ringhals2
31	Tuelreceiver ringhals3
32	fuelreceiver ringnats4
33	fuelreceiver barsebacki
34	Tuetrecerver barsebackz
36	reactor
37	nower 968
38	number of fuel batches 4
39	fuel cycle time 360
40	total fuel mass 100000
41	type LWR

Reactors change color when they start operating in the scenario

'New scenario'

'Edit Reactor'

Edit Object: Reactor_1	
General	
Object Type Reactor	•
Name Reactor_1	
GUI X-pos [0.00-1.00] 0.27	÷
GUI Y-pos [0.00-1.00] 0.16	
Start Time [v] [1090	
Stop Time [y] 2010	÷
Reactor Specific	
Numb. of FuelB. 4	\$
Fuel Cycl. Length [y] 365	-
Power [MW] 1000	÷
Fuel Mass [kg] 100000	-
Efficiency [fraction] 0.35	÷
Reactor Type LWR	•
<u>C</u> ancel	<u>o</u> k

'Edit Scenario'

📕 🛛 Edit Scena	rio 🗕 🗆 🗙
Time Settings]
Start Time [y]	1970 🗘
Stop Time [y]	2010 🗘
Time Step [d]	360
Reactor Step [d] 30 🗘
<u>C</u> ancel	<u>о</u> к

'Plot'

2 File Edit Data Plot Yiew Mindow Help G0: X, Y = [2.45603e+06, 36087.9] Draw <u>م</u> ۸₅ Zz 30000 + **→** 1 1 Pu239 Waste Rep:s(tot) AutoT 25000 AutoO ZX ZY AX AY 20000 PZ Pu Po Cy mass[kg] SD:1 15000 CH:0 Exit 10000 5000 1970-01-02 2010-01-02 1990-01-02 1980-01-02 2000-01-02 debian64, :0.0, /tmp/filek9Zqvk

'Plot'

Names			status			
All Facili	ties (su	m)		\checkmark		
Mines (s	sum)					
Enrichm	n. Plants	s (sum)			
Fuel Fac	tories (sum)				=
Reactor	s (sum)					
Reproc.	Plants	(sum)				
Waste R	lep:s (si	ım)				
Mines (i	nd.)					
Enrichm	n. Plants	(ind.)				
Fuel Fac	tories (ind.)				
Reactor	s (ind.)					~
Isotope	S					
lsotope: Names	s	A	status	 		<u>-</u>
lsotope: Names H1	s	A 1	status			
lsotopes Names H1 H2	s Z 1 1	A 1 2	status			=
lsotopes Names H1 H2 H3	s Z 1 1 1	A 1 2 3	status			
lsotopes Names H1 H2 H3 H4	s]]]]]	A 1 2 3 4	status			=
lsotopes Names H1 H2 H3 H4 He3	5 Z 1 1 1 1 2	A 1 2 3 4 3	status			
lsotopes Names H1 H2 H3 H4 He3 He4	s 1 1 1 1 2 2	A 1 2 3 4 3 4 3 4	status			
Isotopes Names H1 H2 H3 H4 He3 He4 He6	5 Z 1 1 1 1 2 2 2 2	A 1 2 3 4 3 4 6	status			
Isotopes Names H1 H2 H3 H4 He3 He4 He6 Li6	5 2 1 1 1 1 2 2 2 3	A 1 2 3 4 3 4 6 6	status			
Isotopes Names H1 H2 H3 H4 He3 He4 He6 Li6 Li7	5 1 1 1 2 2 2 3 3 3	A 1 2 3 4 3 4 6 6 7	status			
lsotopes Names H1 H2 H3 H4 He3 He4 He6 Li6 Li7 Li8	5 1 1 1 2 2 2 3 3 3 3	A 1 2 3 4 3 4 6 6 7 8	status			

Status

- Functional
 - No reprocessing, no MOX cycles implemented
 - Short runtime (under 5 minutes)
 - Instantaneous processing/infinite storage
- Accepts MCNP output for calculation of burnup matrix
- Can be compiled on new Linux systems
- Data is exported only to Grace, Open-sourcce plotting tool
- Not validated against other codes

Future plans

- Validation of a simple model with results from other codes
- Implementation of new reactor designs using cross sections from Serpent output
 - In spirit of Open-source
 - Requires further validation
 - In development

Future plans

- Introduction of breeder reactors and ADS
 - Requires validation of reprocessing and of breeding

- Accurate calculation of flux using mass balance:
 - In order to find accurate BU matrix
 - Using $E = \Delta mc^2$ flux can be determined

$$-E = E_{radiation} + E_{fission}$$
$$-E_{fission} = \#_{fission} \times E_{1 fission}$$
$$-\#_{fission} = f(t, l, m, \phi, \eta, f, P_{NL})$$
$$-E_{radiation} \approx 7\%$$

Future plans – flux calculation

Future plans – flux calculation

- Problems:
 - $-E_{reactor} = E_{radiation} + E_{fission} E_{loss}$
 - $-E_{loss} = E_{heat} + E_{radiation}$
 - $-E_{radiation} \neq const$
 - Requires iteration of calculating a burnup matrix which includes all possible nuclides, computationally expensive
 - In development

Acknowledgment

• This work is a part of the EU-project "Brilliant" *Project reference: 662167*

and

European Master in Innovative Nuclear Engineering – EMINE, KIC

Thank you for your attention

Questions?