





# Fuel Cycle Modeling Choices:

#### Facility and Time Discretization Effects

By Robert Carlsen

Technical Workshop on Fuel Cycle Simulation Paris - July 6-8, 2016





### Modeling Choices: Facility Discretization

Fleet Reactors:

- Single-group behavior
- Faster simulation
- Never offline
- Incremental refueling
- No fuel competition
- Proportional shutdown

Individual Reactors:

- Independent behaviors (noise)
- Slower simulation
- Refueling outages
- Batched refueling
- Fuel competition
- Discrete shutdown





#### Modeling Choices: Time Discretization

- Trade frequency\*
- Trade size\*
- On-hand inventory size
- Simulation run times

\* effects depend on facility discretization



#### **Scenario Details**

Four Cases:

- Case MI: <u>Monthly time steps</u>, <u>Individual reactors</u>
- Case MF: Monthly time steps, Elect reactors
- Case QI: Quarterly (3-month) time steps, Individual reactors
- Case QF: <u>Quarterly time steps</u>, <u>Fleet reactors</u>



## Scenario

- Transition from 100 LWRs to all SFRs
- SFRs use recycled fuel
- SFRs available in year 35+
- 200 years
- 1% annual electricity demand growth with +/- 10% bounds







### **Reactor Configuration Invariants**

|                                                | LWR      | SFR      |
|------------------------------------------------|----------|----------|
| Discharge Rate $(\frac{kg \cdot HM}{month})$   | 1642.5   | 535      |
| Burnup $(\frac{MWe \cdot month}{kg \cdot HM})$ | 0.547945 | 0.672897 |
| Effective Power (MWe)                          | 900      | 360      |
| Core Size (kg $\cdot$ HM)                      | 88695    | 40125    |





#### Modeling Effects: Cycle Staggering







#### Modeling Effects: Fuel Sharing







#### Modeling Effects: Drawdown and Quantized Shutdown

Inventory Drawdown:

Larger time step

- $\Rightarrow$  Larger withdrawals
  - ⇒ Keep more on-hand
    - $\Rightarrow$  More dead-weight inventory

Quantized Shutdown:

- All-or-nothing reactor operation
  - Missing a bit of fuel  $\Rightarrow$  all off
  - Affects individually modeled facilities
- Outages bounded by time step duration
  - Missing a bit of fuel ⇒ off until next time step
  - Affects all facility types



#### **Generated Power**







#### **Relative Generated Power**





#### **Fuel Shortages**



$$P_{outage}(t) = \sum_{r \in R_t} C_r \cdot H[t - S_{sched}(t, r)] \cdot [1 - O(t, r)]$$



#### Wasted Batches (poor fuel sharing)



13



#### Pu Inventory and Flow

- Shows separated Pu Inventory ready for fabrication
- QI, QF have higher shortage inventory (*Drawdown Effect*)
- In-flow peaking in year ~120+ for MF, QF is from start of recycled cores from SFR decommissioning







#### Pu Inventory and Flow: Case MI Zoom







#### Pu Inventory and Flow: Shortage Zoom







## Effects on Optimization





#### Fuel Cycle Optimization: Basics





#### **Objective Function**

- Penalize LWR energy
- Reward FR energy
- Indirect unfueled FR penalty

$$O_{sim} = \frac{\sum_{t \in sim} E_{t, LWR}}{\sum_{t \in sim} E_{t, tot}}$$





#### **Results: Optimization Convergence**







#### **Results: Optima Cross Comparison**





## Summary

- Demonstrated Cyclus as a method for comparing fuel cycle modeling choices.
  - Implemented variable time step duration.
  - Created a fleet reactor model.
- Investigated and quantified time step duration and facility discretization effects.
  - Quantified inefficiencies such as fuel sharing and drawdown.
  - Runtime affects.
- Looked at effects on optimization.



#### Acknowledgements



#### **U.S. Department of Energy**





## Questions