

Optimizing Fuel Cycle Transitions Under Uncertainty

By Robert Carlsen

Technical Workshop on Fuel Cycle Simulation Paris - July 6-8, 2016

Background:

Fuel Cycle Simulation, Cyclus, and Optimization

Fuel Cycle Optimization: Basics

Fuel Cycle Optimization: Hays' Work

- VISION simulator
- 100 discrete variables fast v light water reactor ratios
- Homegrown simulated annealing
- Multi-objective analysis
- Auto-deployment heuristics
- Hard power capacity curve

Hays, Ross, and Paul Turinsky. 2014. "Stochastic Optimization for Nuclear Facility Deployment Scenarios Using Vision." *Nuclear Technology* 186 (1): 76–89, Figure 3

Optimization Requirements

- Single Objective expensive to evaluate
- Discrete Variables (100s)
- Black-box, derivative free
- Non-linear, discontinuous
- Linear constraints (transition and final state restrictions)

Optimization: Algorithms

- Direct search (Nelder-Mead, pattern search, etc)
- Dividing RECTangles (DIRECT)
- Swarm (particle swarm, ant colony, etc.)
- Evolutionary algorithms
- Surrogate-based techniques (response sufaces, Kriging, etc.)

Custom PSwarm Optimizer

- Available open source version was unsatisfactory
 - Bugs (e.g. segfaults)
 - Poor code documentation and testing
 - Suboptimal parameters
- Wrote my own implementation in Go:
 - Tests prevent regressions, benchmark performance with published lit.
 - Modified pattern-search algorithm:
 - Reset/cycle back to original step size (due to variable \Rightarrow deployments transformation)
 - Poll in multiple random directions at once (due to higher dimensionality)
 - Remember successful polling directions

HTC tooling

- Deploy worker bots/jobs to HTC infrastructure
- Cloud server M ⇒ N scheduling
 - Heartbeat, timeouts, retries, etc.
- Submit jobs to server from anywhere.
 - My PSwarm optimizer
 - fuelcycle.org
 - curl

Deployment Optimization Basics

Scenario

- Transition from 100 LWRs to all SFRs
- SFRs use recycled fuel
- SFRs available in year 35+
- 200 years
- 1% annual electricity demand growth with +/- 10% bounds

Objective Function

- Penalize LWR energy
- Reward FR energy
- Indirect unfueled FR penalty

O_{sim}	_	$\sum_{t\in sim} E_{t, LWR}$
	_	$\sum_{t \in sim} E_{t, tot}$

Input Variables: Basic Encoding

 $N(t, f) = V_{t,f}$

With constraints:

• For each t, f :

 $N_{\text{min}}(t,f) < V_{t,f} \leqslant N_{\text{max}}(t,f)$

• For each t :

$$P_{\min}(t) < \sum_{r \in reactors} C_{t,r} \cdot N_{alive}(t, V_r) < P_{\max}(t)$$

Input Variables: Smarter Encoding

$$\begin{split} P_{new}(t) &= \max\left(0, V_{power}(t) \cdot \max\left[0, P_{max}(t) - L(t)\right] + L(t) - P(t^{*})\right) \\ & L(t) &= \max(P(t^{*}), P_{min}(t)) \\ N(t, r) &= \begin{cases} floor\left(\frac{V_{fac}(t, r) \cdot \left[P_{new}(t) - \frac{r-1}{r'-1}N(t, r') \cdot C(r')\right]}{C(r)} + 0.5\right) &: r > 0 \\ floor\left(\frac{P_{new}(t) - \frac{r_{last}}{r'-1}N(t, r') \cdot C(r')}{C(r)} + 0.5\right) &: r = 0 \end{cases} \right) \\ \end{split}$$

Input Variables: Comparison - Objective A

Input Variables: Comparison - Objective B

Candidate Optimizers

	1. Max # vars	2. Parallelism	3. Robustness	4. Configuration
Custom PSwarm	Unlimited	Good	Good	Easy
JEGA	Unlimited	Good	Good	Tricky
SCOLIB EA	Unlimited	Good	Good	Tricky
NCSU DIRECT	64	Poor	Okay	Easy
SCOLIB DIRECT	1000s	Great	Okay	Easy
NOMAD	<=1000	Poor	Good	Easy
HOPSPACK	Unlimited	Great	Good	Easy
Surrogate methods	10s to 100s	Good	Poor	Tricky

Results: Solver Comparison

Results: Best Transition (Bi-annual)

Hedging Strategies for Disruption

Hedging Overview

- Same scenario as before
- Potential unexpected event at unknown time
- Measure hedging value of deployment strategies
- Find good hedging strategies

Hedging Objective

$$S^*(D,t_d) = O[R^*(D,t_d),t_d] \qquad H(D) = \int_0^\infty S^*(D,t_d) \cdot p(t_d) dt_d$$

- D is a deployment schedule (all facs through all time)
- $R^*(D,t_d)$ is D with optimal post disruption deployments
- O is some single-objective function, as before
- S*(D,t_d) is the hedging sub-objective
- p is the disruption probability density function
- H is the expected objective outcome

Calculating H

$$H(D) = \int_0^\infty S^*(D, t_d) \cdot p(t_d) dt_d$$

- Discretize on t_d
- t_d's spaced equally in probability space
- Piece-wise linear approximation to S*
- Use mid-point rule to integrate

Hedging Sub-objective: Point Approximation

- one H* search \Rightarrow many H evaluations
 - one H evaluation \Rightarrow several S* searches
 - one S* search ⇒ many S (or O) evaluations

• Infeasible nested optimization requires approximations:

$$S^*(D, t_d) \approx \frac{t_d}{t_{end}} \cdot O(D, t_d) + \frac{t_{end} - t_d}{t_{end}} \cdot O^*(t_d)$$

Scenario Details

- Same scenario sans LWR reprocessing limits.
- Disruption reduces Pu generation rate by 33% permanently.
- Objective:
 - Lower \Rightarrow better
 - LWR energy penalty
 - Explicit low capacity factor penalty (needed for disruption)

$$O_{\text{sim}} = \frac{\sum\limits_{t \in \text{sim}} E_{t, LWR}}{\sum\limits_{t \in \text{sim}} E_{t, \text{tot}}} \cdot \frac{\sum\limits_{t \in \text{sim}} C_{t, \text{tot}}}{\sum\limits_{t \in \text{sim}} E_{t, \text{tot}}}$$

Results: SFR Build Schedule Comparison

Results: LWR Build Schedule Comparison

Results: Best Achievable Objectives

Deployment				Disr	uption	Time (y	ear)			
Strategy	23	39	55	70	86	104	123	144	170	200
$D^*(t_d = 23)$	0.654									
$D^*(t_d = 39)$		0.633								
$D^*(t_d = 55)$			0.618							
$D^*(t_d = 70)$				0.586						
$D^*(t_d = 86)$					0.545					
$D^*(t_d = 104)$						0.479				
$D^*(t_d = 123)$							0.384			
$D^*(t_d = 144)$								0.209		
$D^*(t_d = 170)$									0.152	
$D^*(t_d = 200)$										0.142
D*H										

Results: Best Achievable Objectives

Deployment				Disr	uption	Time (y	vear)			
Strategy	23	39	55	70	86	104	123	144	170	200
$D^*(t_d = 23)$	0.654									
$D^*(t_d = 39)$		0.633								
$D^*(t_d = 55)$			0.618							
$D^*(t_d = 70)$				0.586						
$D^*(t_d = 86)$					0.545					
$D^*(t_d = 104)$						0.479				
$D^*(t_d = 123)$							0.384			
$D^*(t_d = 144)$								0.209		
$D^*(t_d = 170)$									0.152	8
$D^*(t_d = 200)$										0.142
D*H	0.654	0.634	0.618	0.586	0.545	0.481	0.388	0.214	0.160	0.155

Results: Best Achievable Objectives

Deployment	Disruption Time (year)									
Strategy	23	39	55	70	86	104	123	144	170	200
$D^*(t_d = 23)$	0.654	0.635	0.636	0.634	0.627	0.624	0.616	0.561	0.561	0.654
$D^*(t_d = 39)$	0.654	0.633	0.629	0.613	0.590	0.557	0.553	0.534	0.576	0.634
$D^*(t_d = 55)$	0.655	0.635	0.618	0.599	0.570	0.539	0.534	0.509	0.557	0.619
$D^*(t_d = 70)$	0.655	0.632	0.619	0.586	0.551	0.515	0.514	0.483	0.513	0.586
$D^*(t_d = 86)$	0.656	0.637	0.618	0.587	0.545	0.494	0.490	0.449	0.459	0.542
$D^*(t_d = 104)$	0.654	0.634	0.618	0.588	0.545	0.479	0.452	0.366	0.406	0.458
$D^*(t_d = 123)$	0.656	0.633	0.617	0.588	0.547	0.482	0.384	0.214	0.163	0.158
$D^*(t_d = 144)$	0.653	0.634	0.618	0.588	0.544	0.480	0.383	0.209	0.156	0.151
$D^*(t_d = 170)$	0.654	0.633	0.617	0.586	0.547	0.483	0.387	0.209	0.152	0.147
$D^*(t_d = 200)$	0.653	0.634	0.618	0.588	0.545	0.480	0.384	0.209	0.152	0.142
D*H	0.654	0.634	0.618	0.586	0.545	0.481	0.388	0.214	0.160	0.155

Results: S* Curves

Results: Outcome Distributions

Some Stats

- Cyclus simulations: ~15,000,000
- CPU hours: ~300,000
- Simultaneous workers: 200-1000
- Simultaneous optimizations: up to 10
- Dreams in code: several

Summary

- Developed techniques for optimizing fuel cycle transitions.
 - Novel mapping of variables to fuel cycle parameters.
 - Tooling for deployment to highly parallel environments.
- Compared DFO solvers on fuel cycle transitions.
- Developed disruption scenario methodology and workflow
 - disruption PDF, expected outcomes
 - sub-objective approximation techniques
 - Tooling and visualization for measuring and finding hedging strategies
- Investigated hedging properties of several deployment schedules

Future Work

- Dimensionality Reduction
 - "Compression" via variables that represent time+capacity points
 - Intra-simulation heuristics to micro-optimize at shorter timescales (e.g. look-ahead)
 - Translate known good (abstract) disruption responses to post-disruption deployments
- Different approximations of S*
- N disruptions or degrees of uncertainty
- More realism...
 - in facility models (e.g. reactor physics)
 - in scenario details (e.g. power demand, reactor parameters, etc.)
 - in disruption/objective details (e.g. objective changes at disruption)

Questions

Appendix

Optimization: Solvers

- Pattern search + particle swarm
- Continuous variables
- Search confined to feasible region
- Population-parallel

- Evolutionary algorithm
- Discrete+continuous variables
- Penalty-based constraints
- Population-parallel

Optimization: Solvers cont.

- Pattern search + particle swarm
- Continuous variables
- Search confined to feasible region
- Population-parallel

- Pattern search
- Discrete+continuous variables
- Penalty-based constraints
- N-dimensions parallel

From Figure 2 of Rios, Luis Miguel, and Nikolaos V. Sahinidis. 2013. "Derivative-Free Optimization: A Review of Algorithms and Comparison of Software Implementations." *Journal of Global Optimization* 56 (3): 1247–93. doi:10.1007/s10898-012-9951-y.

Results: S* Approximations

- R*(D,t_d) = D is a good
 reference (upper bound)
- t_d linear interpolation is okay, but not great
- In limit t_d→t_{end}, approximations converge to actual

Disruption	n S* Appro	S* Approximations						
Time (year	r) Reference (Eq. 5.8)	t_d interp. (Eq. 5.9)	Actual					
23	2.269	0.843	0.654					
39	1.614	0.828	0.634					
55	1.372	0.826	0.618					
70	1.019	0.740	0.586					
86	0.723	0.623	0.545					
104	0.485	0.483	0.481					
123	0.393	0.390	0.388					
144	0.214	0.213	0.214					
170	0.161	0.160	0.160					
200	0.155	0.155	0.155					

Disruption 1 Detail

Disruption 2 Detail

Disruption 3 Detail

Disruption 4 Detail

Disruption 5 Detail

Disruption 6 Detail

Disruption 7 Detail

Disruption 8 Detail

Disruption 9 Detail

Disruption 10 Detail

Fast Reactor Age Distributions

Cumulative Age Distribution: Disruption 1 Year 23

