DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

PLACE OF THE NUCLEAR POWER IN THE ELECTRICITY PRODUCTION IN THE XXIst CENTURY:

WHAT IS DESIRABLE, WHAT IS FEASIBLE?

Anne Baschwitz Gilles Mathonnière

CEA I-tésé

Technical Workshop on Fuel Cycle Simulations Paris July 6-8, 2016

The GRUS model

- What is desirable ?
 - Global nuclear energy prospective scenarios

FRs are essential

- FRs with ambitious features
- What is feasible ?
 - depending on Plutonium and Uranium availability

GRUS

"Gestion des ressources en uranium avec STELLA"

so in English

"Uranium resources management using STELLA software"

DE LA RECHERCHE À L'INDUSTRIE

MAIN FLOWS TAKEN INTO ACCOUNT IN GRUS

PRINCIPLE OF THE SIMULATION IN GRUS

We define:

- The initial conditions of stocks (material stocks, number of each kind of reactors, capacities of factories).
- The key parameters of the model (technical characteristics of reactors, investment and operating costs of a reactor, process costs, resource prices).
- > The electricity demand versus time
- Every year we calculate the need in new capacity

The simulation will determine the nuclear fleet which will meet the demand in electricity according to the availability of the resources and diverse costs.

- What is desirable ?
 - Global nuclear energy prospective scenarios
 - FRs are essential
 - FRs with ambitious features
- What is feasible ?
 depending on Plutonium and Uranium availability

NUCLEAR SCENARIOS OF THE WORLD ENERGY OUTLOOK UP TO 2040

Scenarios up to 2040 : slightly lower previsions after Fukushima

IIASA SCENARIOS: GLOBAL ENERGY ASSESSMENT

A global energy demand growing strongly

Secondary energy: electricity

Electricity being used increasingly as an energy carrier

Secondary energy: nuclear

A strong growth of the nuclear share whenever the energy policy is nuclear-friendly

> Technical Workshop on Fuel Cycle Simulations Paris July 6th 2016

IIASA SCENARIOS UP TO 2100

Long-term scenarios are always high

GLOBAL NUCLEAR SCENARIOS

Technical Workshop on Fuel Cycle Simulations Paris July 6th 2016 DE LA RECHERCHE À L'INDUSTRIE

ELECTRONUCLEAR PRODUCTION

Multiplying factor

	2050/2000	2100/2000
A2	2	16
A3	5	17
В	5	14
C2	3	7

Technical Workshop on Fuel Cycle Simulations Paris July 6th 2016 **NUCLEAR POWER TO BE INSTALLED**

Net power to be installed every year

- We consider the available quantities of natural uranium as limited
 - A study case to clearly define the issues related to the necessary

resources

- Four values are considered for a parametric study
 - 10 Mt \approx identified conventional uranium resources = pessimistic view
 - 20 Mt \approx conventional resources + 4 Mt extracted from phosphates

 \clubsuit realistic view

- 40 Mt = optimistic view
- 80 Mt = very optimistic view

When the committed uranium (i.e. taking into account the needs of operational reactors throughout their service lives) exceeds one of the limits in question, only FRs can be deployed Technical Workshop on Fuel Cycle Simulations

« DEMAND AND NUCLEAR PRODUCTION »

DEPLOYMENT OF EPRs ONLY

Demand

- Limit 10 Mt; PWR only
- Limit 20 Mt; PWR only
- Limit 40 Mt; PWR only
- Limit 80 Mt; PWR only

The deployment of FRs appears essential for nuclear sustainability

- What is desirable ?
 - Global nuclear energy prospective scenarios

FRs are essential

FRs with ambitious features

What is feasible ? depending on Plutonium and Uranium availability

FR INSTALLED CAPACITY TAKING INTO ACCOUNT PU **AVAILABILITY**

Throughout the period, the installation rate of FR fleet is driven by Pu availability rather than by energy demand.

Technical Workshop on Fuel Cycle Simulations Paris July 6th 2016

CUMULATIVE NATURAL URANIUM NEED IN MT

Paris July 6th 2016

22 IIASA B SCENARIO

Committed Uranium: future uranium consumption for the already installed reactors for their remaining life time

Technical Workshop on Fuel Cycle Simulations Paris July 6th 2016 DE LA RECHERCHE À L'INDUSTR

PWRs AND Pu-FRs

Technical Workshop on Fuel Cycle Simulations Paris July 6th 2016

A3 SCENARIO, PWRs AND PU-FRs

- Limit 10 Mt; PWR only
- Limit 10 Mt; PWR+ Pu-FR with BG=0
- Limit 10 Mt; PWR+ Pu-FR with BG=0.2
- Limit 20 Mt; PWR only
- Limit 20 Mt; PWR+ Pu-FR with BG=0
- Limit 20 Mt; PWR+ Pu-FR with BG=0.2
- 80000 TWh 70000 60000 50000 40000 30000 20000 10000 0 2110 2010 2030 2050 2070 2090 2130
- 2150

- Limit 40 Mt; PWR only
- Limit 40 Mt; PWR+ Pu-FR with BG=0
- Limit 40 Mt; PWR+ Pu-FR with BG=0.2
- Limit 80 Mt; PWR only
- Limit 80 Mt; PWR+ Pu-FR with BG=0

- With FRs it would be possible to maintain nuclear production
- With self-sufficient reactors, an installed power plateau is reached
- Production is increased by breeders but demand is not met
- 80 Mt and self-sufficient reactors are needed

A3 Scenario

DE LA RECHERCHE À L'INDUSTR

C2 SCENARIO, PWRs AND Pu-FRs

- —— Limit 10 Mt; PWR only
- Limit 10 Mt; PWR+ Pu-FR with BG=0
- - Limit 10 Mt; PWR+ Pu-FR with BG=0.2
- —— Limit 20 Mt; PWR only
- Limit 20 Mt; PWR+ Pu-FR with BG=0
- - Limit 20 Mt; PWR+ Pu-FR with BG=0.2
- Limit 40 Mt; PWR only
 Limit 40 Mt; PWR+ Pu-FR with BG=0
 Limit 80 Mt; PWR+ Pu-FR with BG=0
- - Limit 40 Mt; PWR+ Pu-FR with BG=0.2

A less constrained scenario
More than 20 Mt with breeder reactors are needed
Or 40 Mt with self-sufficient reactors

- What is desirable ?
 - Global nuclear energy prospective scenarios

FRs are essential

FRs with ambitious features

What is feasible ? depending on Plutonium and Uranium availability

A large increase of the nuclear installed capacity in the prospective scenarios (up to 2100 from 5 to 20 times that of today)

♦a challenge for nuclear technology

Constraints on uranium resources?

Nuclear is not sustainable with only LWRs
 The fourth generation is therefore essential

Constraints on Plutonium availability

Solution The Second Sec

- Importance of uranium resources
 importance of mining exploration
- Importance of research on the fourth generation of reactors

FRs with highly performing technological characteristics (breeding gain, core size, cooling time, FRs started up with enriched uranium...)

Will nuclear be able to develop as the prospective scenarios foresee?

Thank you for your attention