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Gauge group :

(couplings)

The spontaneous breaking of the electroweak gauge group leads to 2 massive 
gauge bosons (W± , Z) and 1 massless gauge boson (the photon γ)

Fermions :  come in three generations (family replication)

LH fermions → SU(2) doublets                      → couple to the W

RH fermions → SU(2) singlets                → do not couple to the W

Leptons from different generations are distinguished by their flavour (e, µ, τ), 
which labels the charged lepton mass eigenstates

Neutrinos in the electroweak Standard Model 
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Neutrinos are special fermions :

1) have only weak interactions ⇒ very small interaction rate (this is why 
detecting them is so difficult)

2) no electric charge ⇒ can be their own antiparticles (Majorana fermions)

3) the SM as originally defined contains no RH neutrino, since only       (or 
more precisely the left-helicity neutrino) has been observed [Goldhaber 1958]

⇒ neutrinos are massless in the SM

A fermion mass term involves both chiralities:

[way out: Majorana mass term, but cannot be generated in the SM]

4) neutrinos are actually massive, but their masses are much smaller (< 1 eV) 
than the ones of charged leptons and quarks; also their mixing angles (PMNS 
matrix) are large, while those of the quarks (CKM matrix) are small
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Neutrinos interactions

Only couple to the W and the Z bosons :

θw = angle de Weinberg
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Neutrinos only couple to the W and the Z bosons :

All SM interactions (including the charged lepton couplings to the photon and 
the Z, and their Yukawa couplings) preserve lepton number

(accidental global symmetry of the SM; follows from gauge and Lorentz  
invariance + renormalizability; not a fundamental symmetry)

Thus e.g.                     is allowed, but                     is forbidden

In the absence of neutrino masses, lepton flavour (i.e. the individual quantum 
numbers                  ) is also exactly conserved. Neutrino masses induce 
lepton flavour violating (LFV) transitions                    (oscillations), but also 
LFV processes like                   and                        , which however are 
extremely suppressed in the absence of new physics
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Dirac mass term

The simplest way to describe a massive neutrino is to add a       to the SM 
and to write a Dirac mass term, as for the other fermions:

The massive neutrino       is a Dirac fermion (2 independent chiralities)

not invariant under                         but can be generated from a Yukawa 
coupling to the SM Higgs doublet (which has weak isospin 1/2)

caveat :  possible to write  a Majorana mass term for       ⇒ end up with two 
Majorana neutrinos rather than one Dirac neutrino (see later)

Massive neutrinos – Dirac versus Majorana
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Majorana mass term

Instead of introducing      , form a RH spinor from 

                                        CP conjugate of 

C = charge conjugation matrix; defines the charge conjugate of a Dirac spinor

                                              describes the corresponding antifermion

⇒ the existence of a LH neutrino (     ) implies the existence of a RH 
antineutrino (               )

Can write a Majorana mass term :

The massive neutrino                        satisfies the Majorana condition
                 → Majorana fermion

                              

A Majorana mass term violates lepton number (signature of a Majorana 
neutrino) and cannot be generated from a coupling to the SM Higgs doublet 
⇒ neutrino masses require an extension of the SM
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Dirac versus Majorana neutrino

A Dirac neutrino is different from its antiparticle (            )
⇒ describes 4 degrees of freedom: 

Described by a 4-component spinor                      with independent LH and 
RH components 

A Majorana neutrino satisfies the condition
⇒ describes only 2 degrees of freedom: 

Can be described by a 4-component spinor                      ,  but the LH and

RH components are not independent as                 :

The Majorana condition is inconsistent with any conserved additive quantum 
number: if ψ possesses a conserved quantum number q, 

Thus only neutrinos (not quarks, charged leptons) can be Majorana fermions

For the same reason, one cannot rephase a Majorana neutrino

⌫ " , ⌫ # , ⌫̄ " , ⌫̄ #
⌫ 6= ⌫c

⌫D =

✓
⌫L
⌫R

◆

⌫ = ⌫c = C⌫̄T

⌫ # , ⌫̄ "

⌫M =

✓
⌫L
⌫R

◆

⌫M = ⌫cM ⌫R = C⌫̄TL

 ! ei✓q )  c ! e�i✓q



How to distinguish Majorana from Dirac neutrinos?

Dirac and Majorana neutrinos have the same gauge interactions, since weak 
interactions only involve       and its antiparticle                (      , if it exists,    
is a gauge singlet and does not interact at all)

For the same reason, oscillations probabilities are the same for Dirac and 
Majorana neutrinos (production and detection are weak interaction 
processes)

The only practical difference between Dirac and Majorana neutrinos lies in 
their mass term, which violates lepton number by 2 units in the Majorana case

→ the Majorana nature of neutrinos can be established in               processes 
such as neutrinoless double beta decay
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How to account for neutrino masses?

Simplest possibility: add a RH neutrino to the SM

In addition to the Dirac mass term                              , must write a 
Majorana mass term for the RH neutrino, which is allowed by all (non-
accidental) symmetries of the SM (or justify its absence):

[only lepton number, if imposed, can forbid this term]

Mass eigenstates : write the mass terms in a matrix form and diagonalize
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Defining                               (such that                   ), one can see that the 
mass eigenstates are 2 Majorana neutrinos with masses m1 and m2 :

‟Seesaw” limit : 
(       = gauge singlet ⇒ M unconstrained by electroweak symmetry breaking)

→ the light Majorana neutrino is essentially the SM neutrino

→ natural explanation of the smallness of neutrino masses

 New physics interpretation :  M = characteristic scale of the new physics 
responsible for lepton number violation – might be related to Grand 
Unification: the fermion content of SO(10) includes a RH neutrino in addition 
to the SM fermions, and B-L is a generator of SO(10)
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Alternative mechanisms of neutrino (Majorana) mass generation :

- other versions of the seesaw mechanism with heavy SU(2) triplets (scalar  
or fermionic)

- radiative models: neutrino masses generated at the one-loop (Zee) or two 
loop level (Babu-Zee)

- more exotic: supersymmetric models with R-parity violation (in which 
lepton number is violated), extra spatial dimensions...



When neutrinos are massive, possibility of flavour mixing : the neutrino to 
which a given charged lepton (e, µ or τ) couples via the W is not a mass 
eigenstate, but a coherent superpositions of mass eigenstates

As for quarks, the origin of flavour mixing is the mismatch between the basis 
of gauge (or flavour) eigenstates and of mass eigenstates. The relative rotation 
is the lepton mixing matrix, known as PMNS matrix (Pontecorvo-Maki-
Nakagawa-Sakata)

Flavour mixing – PMNS matrix

Standard case (3 flavours):

Add a sterile neutrino:

  U = 4x4 unitary matrix

Only                   couple to electroweak gauge boson, but all four mass 
eigenstate are produced in a beta decay: 

Active-sterile neutrino mixing
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Physical parameters in UPMNS

U is a 3x3 unitary matrix ⇒ 3 mixing angles and 6 phases (not all physical) 

(i) if neutrinos are Dirac fermions : analogous to quarks and CKM

can rephase the lepton fields                                                     and absorb 
the phases in the PMNS matrix, so that CC interactions are unaffected

⇒ removes 2x3 - 1 = 5 relative phases ⇒ a single physical phase

(i) if neutrinos are Majorana fermions : cannot rephase the neutrino fields, 
since this would affect the Majorana condition

⇒ removes only 3 phases ⇒ 3 physical phases : 1 ‟Dirac” phase
and 2 ‟Majorana” phases
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Standard parametrization of the PMNS matrix

Analogous to CKM: written as the product of three rotations with angles
θ23, θ13 and θ12, the second (complex) rotation depending on the phase δ 

P is the unit matrix in the Dirac case, and a diagonal matrix of phases 
containing 2 independent phases      in the Majorana case

               ⇒  CP violation in oscillations:

The Majorana phases play a role only in               processes like neutrinoless 
double beta decay

oscillations à 3 saveurs (dans le vide)

2          indépendants:            (« atmosphérique ») et           (« solaire »)

U contient 3 angles de mélange                    et une phase     [+2 si Majorana]

              ⇒ violation de CP dans les oscillations:
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1 Introduction

The atmospheric [1, 2] plus solar [3] neutrino data point to neutrino oscillations [4, 5]
and can be easily accommodated in a three-family mixing scenario.

Let U , with (νe, νµ, ντ )T = U · (ν1, ν2, ν3)T , be the leptonic Cabibbo-Kobayashi-
Maskawa (CKM) matrix in its most conventional parametrization [6]:
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with s12 ≡ sin θ12, and similarly for the other sines and cosines. Oscillation experiments
are sensitive to the neutrino mass differences and the four parameters in the mixing
matrix of Eq. (1): three angles and the Dirac CP-odd phase.

The SuperKamiokande [1] data on atmospheric neutrinos are interpreted as oscil-
lations of muon neutrinos into neutrinos that are not νe’s, with a mass gap that we
denote1 by ∆m2

23. Roughly speaking, the measured mixing angle θ23 is close to maxi-
mal and |∆m2

23| is in the range 10−3–10−2 eV2. The solar neutrino deficit is interpreted
either as MSW (matter enhanced) oscillations [5] or as vacuum oscillations (VO) [4]
that deplete the original νe’s, presumably in favour of νµ’s or alternatively into ster-
ile neutrinos. The corresponding squared mass differences –O(10−5-10−4) eV2 for the
large mixing angle MSW solution (LMA-MSW), O(10−6) eV2 for the small mixing
angle MSW solution (SMA-MSW), or O(10−10) eV2 for VO– are significantly below
the range deduced from atmospheric observations. We identify this mass difference
with ∆m2

12 in this parametrization. Its sign is constrained by solar data: while the
SMA-MSW solution exists only for positive ∆m2

12, in the LMA-MSW range there is
also a small window at negative values [7].

These oscillation signals will be confirmed and further constrained in ongoing and
planned atmospheric, solar and long baseline reactor experiments [8], as well as in
future long baseline accelerator neutrino experiments [9]. In a few years they will
answer the question of sterile neutrinos contributing or not to present data. The MSW
effect is expected to play a major role in explaining the solar deficit and both solar and
reactor experiments will also clarify whether Nature has chosen the LMA-MSW rather
than SMA-MSW or VO solutions.

The atmospheric neutrino parameters will be known with better precision as well.
Experimental information relevant for a more precise knowledge of the atmospheric
neutrino fluxes will be available [10, 11]. Also, projected long baseline accelerator
experiments will improve the precision of |∆m2

23| and θ23. For instance, |∆m2
23| is

expected to be measured at MINOS with an accuracy below 10% if |∆m2
23| > 3× 10−3

eV2 [12].
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Oscillations are a quantum-mechanical process due to neutrino mass and 
mixing.  An (ideal) oscillation experiment involves 3 steps:

1) production of a pure flavour state at t = 0   (e.g. a       from                     )

This flavour state is a coherent superposition of mass eigenstates determined 
by the PMNS matrix, e.g. in the 2 flavour case 

2) propagation
Each mass eigenstate, being an eigenstate of the Hamiltonian in vacuum, 
evolves with its own phase factor            ⇒ modifies the coherent 
superposition, which is no longer a pure flavour eigenstate:

3) detection via a CC interaction which identifies a specific flavour

probability amplitude :

oscillation probability :

Neutrino oscillations in vacuum and CP violation
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2-flavour oscillations in vacuum

Assuming ultra-relativistic neutrinos
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                    et pour les neutrinos vs les antineutrinos
⇒ oscillations modifiées dans la matière, résonances possibles...
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A typical exclusion curve (CHOOZ) :
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Figure 9: Exclusion plot for the oscillation parameters based on the absolute comparison
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3-flavour oscillations in vacuum

                                        (fields)   ⇒                                        (states)

                         and for antineutrinos

1) production:

2) propagation:                          

3) detection:
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The second term is CP-odd and changes sign for antineutrino oscillations
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CP violation in oscillations in vacuum

                                                             at leading order in           :

Jarlskog invariant: 

→ conditions for CPV: 
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muon to electron neutrino channel

 

At second order in            and       :

  

The last term is CP-odd and switches sign for               oscillations
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