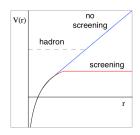
γ -hadrons correlation in pp collisions at \sqrt{s} = 7 TeV with ALICE at the LHC

Astrid Vauthier

LPSC-Grenoble

2nd year PhD student seminar

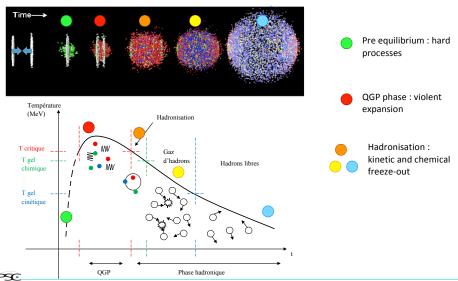
In this presentation


- Physics motivations
- ALICE experiment
- Analysis strategy and status
- ▶ Conclusions and outlook

Diving into the theory ...

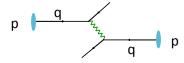
- Standard model: describes elementary particles and their interactions
- Quantum Chromo-Dynamics (QCD): strong interaction between partons (i.e. quarks or gluons)
- ▶ Interaction potential between partons: $V(r) = -rac{A(r)}{r} + Kr$
 - small r: "weak" interaction \rightarrow asymptotic freedom
 - large r: second term is dominant \rightarrow confinement in hadrons
- Color screening: appears at high color charge density
 → the partons are not confined anymore
 - ⇒ Quark and Gluon Plasma (QGP)

QGP in practice

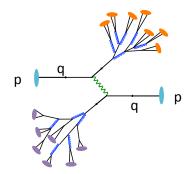


- Phase transition predicted at T \approx 175 MeV et $\epsilon \approx$ 5 GeV/fm³ (0.4 GeV/fm³ for hadronic matter)
- But what is QGP ?
 - Hot and deconfined medium
 - In thermodynamical equilibrium
 - In a defined volume
 - State of the universe \approx 1 μs after the Big Bang
- Now accessible with accelerators (LHC, RHIC) through ultra relativistic heavy-ion (Pb or Au) collisions

Heavy ion collisions: the evolution

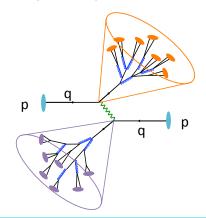

Björken scenario:

Parton fragmentation and jet


► Hard process: very high energy taking part in interaction

Parton fragmentation and jet

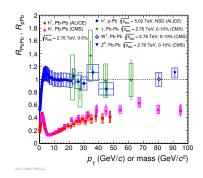
- Hard process: very high energy taking part in interaction
- Fragmentation: described by the fragmentation function D(z). $z = p_T^{\text{hadron}}/p_T^{\text{parton}}$



Parton fragmentation and jet

- ► Hard process: very high energy taking part in interaction
- Fragmentation: described by the fragmentation function D(z). $z = p_T^{\text{hadron}}/p_T^{\text{parton}}$
- ▶ Jet: hadrons form a particles jet in a finite size cone

PhD student seminar - March 24, 2016


Effects due to QGP phase

- ▶ QGP phase implies final state modifications compared to pp collisions (i.e in vacuum)
- Relevant observable: Nuclear modification factor

$$R_{AA} = rac{N_{AA}}{< N_{coll} > imes N_{pp}}$$

- $R_{AA} = 1: \gamma, Z/W^{\pm}$
- *R_{AA}* < 1: hadrons

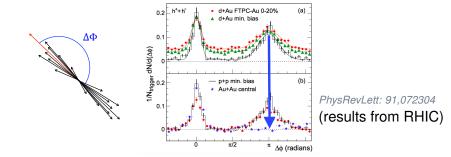
 \Rightarrow High p_T particles suppression is attributed to parton energy loss in QGP

Effects due to QGP phase

- QGP phase implies final state modifications compared to pp collisions (i.e in vacuum)
- Relevant observable: Nuclear modification factor

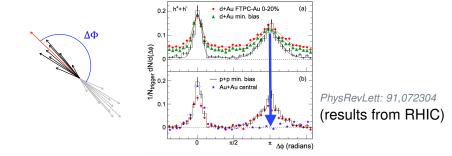
$$R_{AA} = rac{N_{AA}}{< N_{coll} > imes N_{pp}}$$

- $R_{AA} = 1: \gamma, Z/W^{\pm}$
- R_{AA} < 1: hadrons


 \Rightarrow High p_T particles suppression is attributed to parton energy loss in QGP

Jet quenching

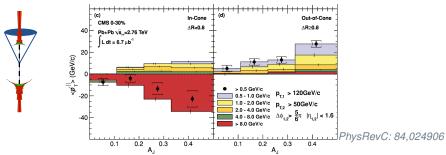
- Angular distribution between particles
- Recoiling jet is suppressed in heavy ion collisions


⇒What's the amount of energy lost and where does this energy go?

Jet quenching

- Angular distribution between particles
- Recoiling jet is suppressed in heavy ion collisions

⇒What's the amount of energy lost and where does this energy go?



Energy redistribution

- From jet analysis (CMS):
 - di-jet momentum imbalance measurement
 - In-cone imbalance corresponds to out-of-cone imbalance

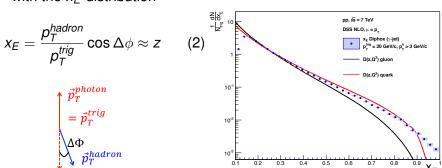
$$p_T^{\parallel} = \sum_{i} -p_T^{i} \cos(\phi_i - \phi_{\text{leading jet}}) \tag{1}$$

 \Rightarrow Energy is not recovered in the jet cone and is redistributed preferentially with low p_T particles

Energy loss measurement: observable

- Until now: proof of parton energy loss in medium
- Interest: quantify parton medium induced energy loss

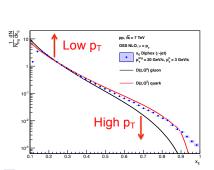
 $\gamma\text{-hadrons}$ correlations = clean way to measure parton energy redistribution at low $p_{\rm T}$

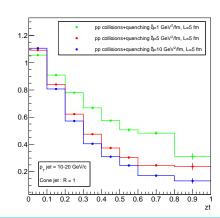

PhD student seminar - March 24, 2016

Energy loss measurement: pp reference

Annihilation

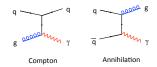
- Aim: Measurement of the Fragmentation Function D(z) using γ -jet events produced with hard processes
 - Compton: $q + g \rightarrow \gamma + q$
 - Annihilation: $q + \bar{q} \rightarrow \gamma + g$
 - lacktriangle Initial parton energy known: ${m E}_{m{initial}}^{m{parton}}pprox {m E}_{\gamma}$
- Good approximation of the FF with the x_F distribution

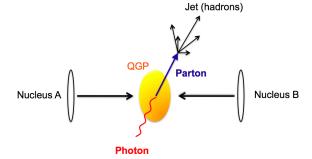




Energy loss measurement in Pb-Pb

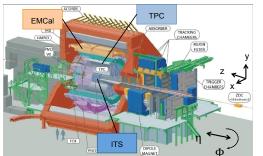
- ▶ What we expect to see
 - Suppression of high p_T particles
 - Modification of the x_E distribution depending on the medium properties

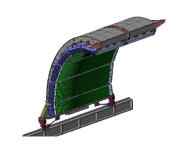


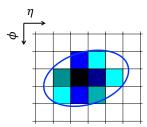


γ -hadrons correlations: Method

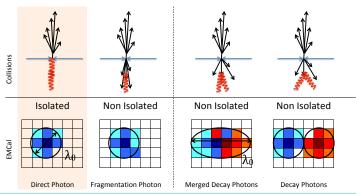
- ▶ Obtain the x_E distribution for isolated photons: $f(x_E) = \frac{1}{N_{tria}^{\gamma}} \frac{dN_h}{dx_E}$
- ▶ Need to identify:
 - Isolated photons (trigger particles)
 - hadrons coming from the opposite side parton fragmentation





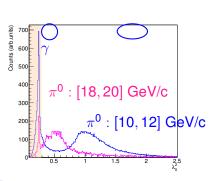

ALICE and EMCal

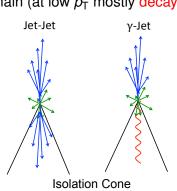
- ▶ ALICE designed for low p_T particles ID
- Charged particles: ITS and TPC
- ▶ Neutral particles : EMCal
 - acceptance: $|\eta|$ < 0,7 et $\Delta\Phi=$ 107°
 - Segmentation in lecture units: towers (0.014 × 0.014 rad)
 - Showers in EMCal = clusters



Photons background contributions

- Direct photons : isolated and circular clusters
- Several background contributions:
 - $\pi^0/\eta \to \gamma \gamma$ (2 photons merged in one single cluster)
 - Decay γ from π^0 or η
 - Fragmentation photons
 - Electrons or hadrons

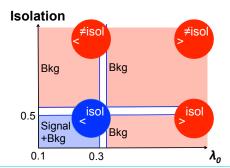

Isolated photons background suppression



Apply cuts on the reconstructed EMCal clusters:

- Leading particle of the event
- Charged particles veto
- ▶ Round-shaped cluster ($\lambda_0^2 \in [0.10, 0.3]$)
- ▶ Isolation cut ($\sum p_{T}^{\text{in cone}} < 1.0 \text{ GeV/c}$)

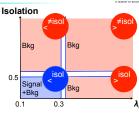
After these cuts some contributions remain (at low p_{T} mostly decay γ)


Purity

Remaining background contributions (decay photons) have to be estimated to extract the isolated photons purity

Purity definition:

$$p = \frac{\text{direct photons clusters}}{\text{all isolated circular clusters}} = \frac{S_{<}^{isol}}{N_{>}^{isol}} = 1 - \frac{B_{<}^{isol}}{N_{>}^{isol}}$$
(3)

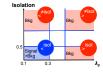


Purity estimate

First assumption:

$$\frac{B_{<}^{\text{isol}}}{B_{<}^{\neq \text{isol}}} = \frac{B_{>}^{\text{isol}}}{B_{<}^{\neq \text{isol}}} \Longleftrightarrow \frac{B_{<}^{\text{isol}}/B_{<}^{\neq \text{isol}}}{B_{<}^{\text{isol}}/B_{<}^{\neq \text{isol}}} = 1 \tag{4}$$

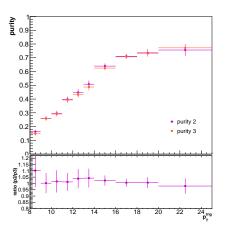
Proportion of isolated clusters is the same at low and high λ_0^2


- Wrong assumption: bias at low λ_0^2 , the double ratio falls around 0.8
- Cannot access B in data: estimate double ratio with simulation

Purity estimate: 2 methods (p_2 and p_3)

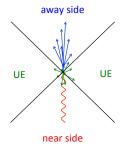
- \triangleright p_2 : only background
 - No signal in background regions in data

- ⇒Set of cuts defining background regions: [3.0 GeV/c, 0.6]
- ▶ p₃: signal + background
 - Signal contamination in background regions is the same in data and MC



Purity estimate: results

Final results for p_2 and p_3 (statistical uncertainties only)



⇒ Purity grows from 30% to 80% The systematics are around 5%

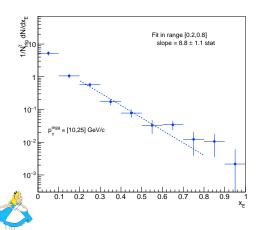
Underlying Event (UE) subtraction

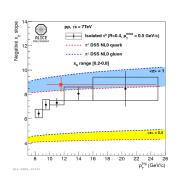
- ▶ UE: Some hadrons do not come from the hard process
 - In pp collisions: particles production is isotropic in azimuth
- Avoid jet contamination: UE is estimated in cones orthogonal to trigger particle

x_E distribution

The x_E distribution for isolated photons is defined as:

$$f(x_E)^{\gamma} = \frac{1}{p} f(x_E)^{clusters} - \frac{1-p}{p} f(x_E)^{\pi^0} - f(x_E)^{UE}$$
 (5)


- $f(x_E)^{clusters}$: all isolated and circular clusters
- ▶ $f(x_E)^{\pi^0}$: estimated with isolated high $\lambda_0^2 \pi^0$ clusters
- $ightharpoonup f(x_E)^{UE}$: estimated in cones orthogonal to trigger particle



x_E distribution: result

 \triangleright x_E distribution for isolated photons using p_3

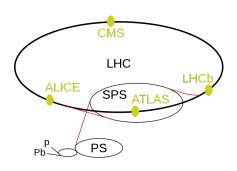
Conclusions

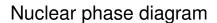
- ▶ The parton energy loss mechanism in QGP is not well understood
- ▶ The fragmentation function can be approach with the γ -hadrons correlations using the x_F distribution
- Direct photons identification:
 - First set of cuts to remove most of direct photons background
 - Purity estimate: need to rely on MC the two methods developed give compatible results
- Underlying event subtracted statistically based on the isotropy of particles production
- x_E distribution has been presented

Outlook for next months

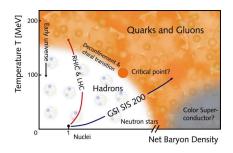
- Analysis in pp collisions:
 - Finalize the systematic studies on x_E distribution (purity already done)
 - Finalize the related analysis note to be submitted to the ALICE collaboration as a first step for a paper
 - Compare the x_F distribution with models
- EMCal calibration: finalize calibration of EMCal and DCal for 2015 data
- Analysis in p-Pb collisions:
 - Change of strategy for UE?
 - Besides UE the analysis strategy should be unchanged: should be faster than pp analysis

PhD student seminar - March 24, 2016

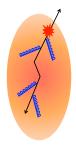

BACK UP


LHC

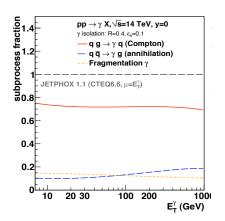
4 main experiences


- ► ATLAS and CMS : new physics searches
- ► LHCb : matter/anti-matter, CP violation
- ALICE : hadronic physics

Phase transition: increase T and/or μ_B

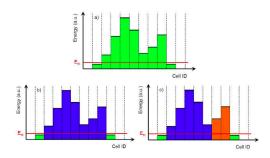


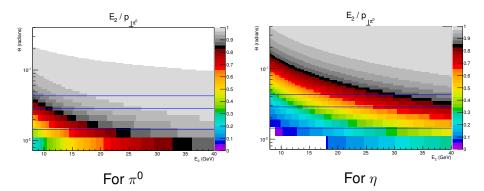
Surface bias


- ► The highest momentum particle is taken as trigger particle:
 - comes from a parton that did not pass through a lot of QGP
 - the opposite side parton passed through a lot of QGP and is completely attenuated

Production fraction of hard processes

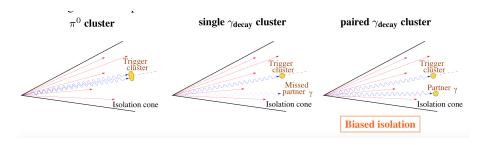
Dominant processus : Compton diffusion $\Rightarrow x_E$ distribution slope approximate the quark FF





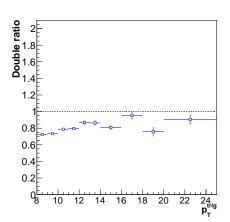
Several types of clusterization to reconstruct particles in EMCal : V1, V2, NxM, V1+Unfolding

Neutral mesons kinematics



Assumption bias

- ▶ Paired gamma decays : present only at low λ_0^2
- ► MCC : at high λ_0^2



Background double ratio

Result from simulation as we cannot access the double ratio in data: bias is quite small

MC JJ correction

Estimates the background isolation fraction ratio at low and high λ_0^2 :

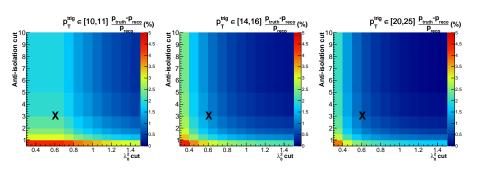
ates the background isolation on ratio at low and high
$$\lambda_0^2$$
:
$$\left(\frac{B_<^{isol}/B_<^{\neq isol}}{B_>^{isol}/B_>^{\neq isol}}\right)_{data} = \left(\frac{B_<^{isol}/B_<^{\neq isol}}{B_>^{isol}/B_>^{\neq isol}}\right)_{MC(JJ)}^{Bkg}$$

- Hypothesis:
 - No signal in B, C and D areas in data and jet-jet simulation \rightarrow cut at high λ_0^2 and anti isolation
 - Isolation fractions are constant in high λ_0^2 region

$$\rho_{2} = 1 - \left(\frac{B_{<}^{\neq \text{ isol}}/B_{<}^{\text{isol}}}{B_{>}^{\neq \text{ isol}}/B_{>}^{\text{isol}}}\right)_{data} \times \left(\frac{B_{<}^{\text{isol}}/B_{<}^{\neq \text{isol}}}{B_{>}^{\text{isol}}/B_{>}^{\neq \text{isol}}}\right)_{MC(JJ)}$$
(6)

Isolation

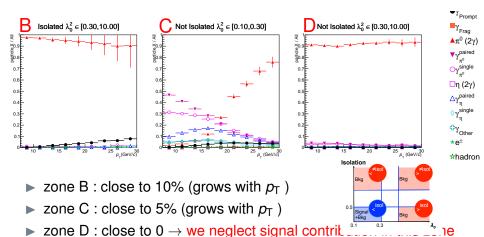
Hypothesis 1: No signal in B, C and D zones 1/2


- Closure test: check difference between p_{MC}^{truth} and p_{reco}
- $ightharpoonup p_{reco}$: found by replacing data term in p_2 with a GJ + JJ simulation
- ▶ If no signal in B, C and D zones: $p_{reco} = p_{MC}^{truth}$

$$p_{2,reco} = 1 - \left(\frac{B_{<}^{\neq isol}/B_{<}^{isol}}{B_{>}^{\neq isol}/B_{>}^{isol}}\right)_{GJ+JJ} \times \left(\frac{B_{<}^{isol}/B_{<}^{\neq isol}}{B_{>}^{isol}/B_{>}^{\neq isol}}\right)_{MC(JJ)}$$
(7)

Hypothesis 1: No signal in B, C and D zones 2/2

▶ When p_{reco} very close from p_{MC}^{truth} no signal in B, C and D zones



 \Rightarrow A good agreement (less than 2 % difference) is found between the true purity and the corrected one for the whole p_T range for the set of tight cuts [3.0 GeV/c, 0.6]

Particles proportions


Proportion of each particle type in background zone B, C and D

Hypothesis 2: Isolation fraction at high λ_0^2

- Use of tight cuts: the isolation fractions have to be the same in the whole range of high λ_0^2 if not their evolution have to be the same in data and MC (use of double ratio)
 - ▶ Divide the high λ_0^2 region into 2 subregions with same statistic

Difference is not the same in data and MC: lead to a systematic (not presented today)

MC GJ+JJ correction 1/2

Bkg

Bkg

0.3

Try to get rid of hypothesis 2 (constant isolation fractions at high λ_0^2)

► Assume $B_i^j = k_i^j N_i^j$

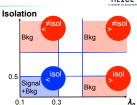
$$\left(\frac{B_{<}^{isol}/B_{<}^{\neq isol}}{B_{>}^{isol}/B_{>}^{\neq isol}}\right)_{data} = \left(\frac{B_{<}^{isol}/k_{<}^{\neq isol}N_{<}^{\neq isol}}{k_{>}^{isol}N_{>}^{isol}/k_{>}^{\neq isol}N_{>}^{\neq isol}}\right)_{data}$$

and

$$\left(\frac{B_{<}^{isol}/B_{<}^{\neq isol}}{B_{>}^{isol}/B_{>}^{\neq isol}}\right)_{GJ+JJ} = \left(\frac{B_{<}^{isol}/k_{<}^{\neq isol}N_{<}^{\neq isol}}{k_{>}^{isol}N_{>}^{isol}/k_{>}^{\neq isol}N_{>}^{\neq isol}}\right)_{GJ+JJ}$$

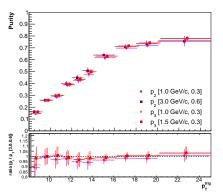
- Hypothesis:
 - Assume $(k_i^l)_{data} = (k_i^l)_{MC(GJ+JJ)}$, i.e. signal contamination in B, C and D zones are the same in MC (GJ+JJ) and data (new compared to p_2)

Isolation


MC GJ+JJ correction 2/2

The hypothesis leads to:

$$\left(\frac{B_{<}^{isol}/N_{<}^{\neq isol}}{N_{>}^{isol}/N_{>}^{\neq isol}}\right)_{data} = \left(\frac{B_{<}^{isol}/N_{<}^{\neq isol}}{N_{>}^{isol}/N_{>}^{\neq isol}}\right)_{MC(GJ+JJ)}$$

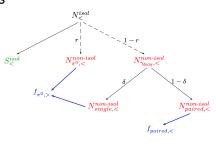

$$p_{3} = 1 - \left(\frac{N_{<}^{\neq \text{Isol}}/N_{<}^{\text{isol}}}{N_{>}^{\neq \text{isol}}/N_{>}^{\text{isol}}}\right)_{data} \times \left(1 - \rho_{\text{MC}}^{truth}\right) \left(\frac{N_{<}^{isol}/N_{<}^{\neq isol}}{N_{>}^{isol}/N_{>}^{\neq isol}}\right)_{MC(GJ+JJ)} \tag{8}$$

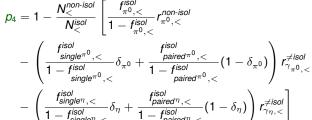
Comparison p_2 vs p_3

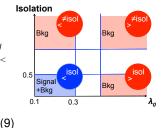
- ▶ Signal contamination in B, C and D zones could be not well reproduced $((k_i^j)_{data} \neq (k_i^j)_{MC(GJ+JJ)})$
- ► Compare p_3 with p_2 to avoid bias from signal contamination

 \Rightarrow No signal contamination bias for p_3 with set of cuts [1.5 GeV/c, 0.3]

Purity systematics


- Signal contamination
- k factors
- Smearing

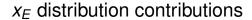

Splitting method: formula



- ► Split the background contributions
- Proportion of species $r_{i<}^{iso} = N_{i<}^{iso}/N_{tot<}^{iso}$ (MC)
- Isolation fraction $f_{i,<} = N_{i,<}^{iso}/N_{i,<}^{iso+\neq iso}$
- (data)

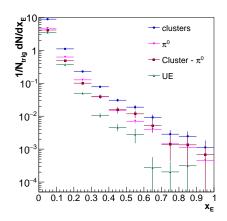
 Fraction of single gamma decays
- Fraction of single gamma decays $\delta_i = N_i^{single}/N_i^{single+paired}$ (MC)

x_F formula



$$\begin{split} f(x_{E})^{\gamma} = & \frac{1}{\sum_{i} p_{i} N_{trig,i}^{clusters}} \sum_{i} p_{i} N_{trig,i}^{clusters} \left\{ \frac{1}{p_{i}} f(x_{E})_{i}^{clusters} \right. \\ & \left. - \frac{1 - p_{i}}{p_{i}} \left(r_{\pi^{0},i} f(x_{E})_{i}^{\pi^{0}} + r_{\gamma^{\pi^{0}},i} \left[(1 - \delta_{\pi^{0},i}) f(x_{E})_{i}^{\gamma^{\pi^{0}}_{paired}} + \delta_{\pi^{0},i} f(x_{E})_{i}^{\gamma^{\pi^{0}}_{single}} \right] \right. \\ & \left. + r_{\eta,i} f(x_{E})_{i}^{\eta} + r_{\gamma^{\eta},i} \left[(1 - \delta_{\eta,i}) f(x_{E})_{i}^{\gamma^{\eta}_{paired}} + \delta_{\eta,i} f(x_{E})_{i}^{\gamma^{\eta}_{single}} \right] \right) \right\} \end{split}$$

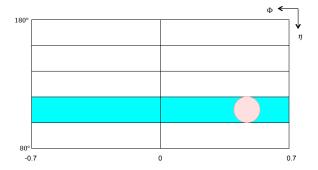
PhD student seminar - March 24, 2016


where $f(x_E)_i^{j,measured} = f(x_F)_i^{j,wanted} + f(x_F)_i^{j,UE}$

A. Vauthier

UE important at low p_T

x_E systematics



- Tracking system resolution
- Hybrid tracks
- Isolation
- λ_0^2

Estimate of UE in Pb-Pb collisions

- ► High multiplicity : trigger particle never isolated
- Subtract UE, then apply isolation cut
- ightharpoonup Estimate in the same ϕ band as the isolation cone

