Developments and simulation around a detector dedicated to the quality assurance in radiation therapy

Supervisors:

Y. ARNOUD J.-F. ADAM R. DELORME

PhD Student Seminar 2016/03/29

Outline

Introduction to the scientific background

→ Quality assurance in radiation therapy and bi-dimensional detectors

Simulation around the detector

→ Linac simulation and input parameters determination

Developments around the detector

→ New prototype and electronics calibration

Conclusion and perspectives

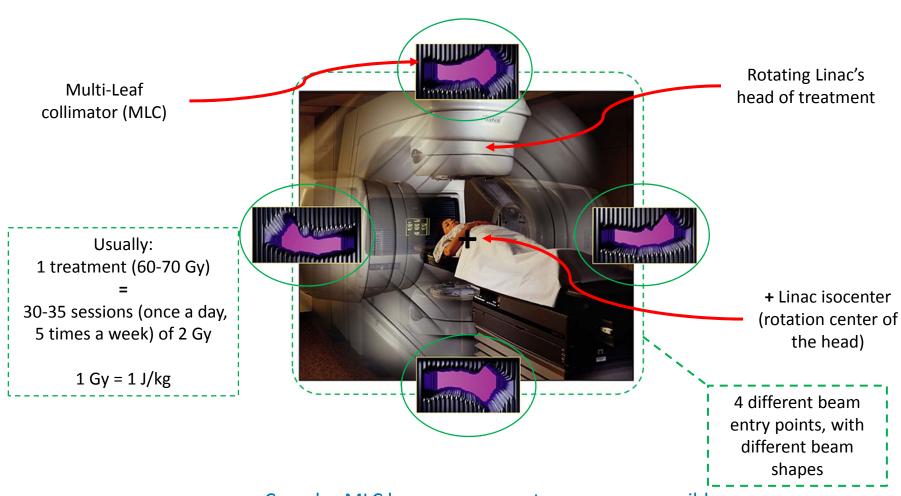
Cancer treatment, the situation in France

In 2015, the French National Cancer Institute (INCa) lists:

- 385 000 new cancer diagnosed
 - → About 1/2 of the cancers are « cured »

Treatment statistics in 2014

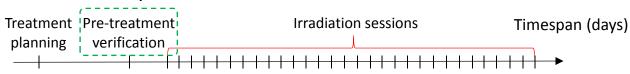
- About 1.200 million patients hospitalized
- Represents approximately 15 billion € expense to handle cancer patients: 5% of this budget for radiotherapy
- About 1/2 of the patients treated with radiations
 - → Huge improvements in the treatment methods but increase of the complexity


Medical linear accelerator (Linac)

Several incidents involving a patient in radiation therapy occur every year

- 5 severe incidents in 2015, 4 in 2014 (source : ASN)
- Nevertheless, fewer and fewer compared to the past decades...
 - → More and more constraining quality assurance procedures adopted in radiation therapy services

To understand, how a radiation therapy session looks like...


Complex MLC leaves movements, errors are possible

→ Need for efficient tools to control the quality of treatments

Quality assurance (QA): how the medical physicist prevents errors

Pre-treatment verification

- With dedicated device or radiochromic films
- Drawback: only once before ALL the irradiation sessions

"In-vivo" dosimetry (DIV)

QA 2D detector with phantom

• With **point-like diode dosimeters**, placed on the patient's skin

• **Drawback**: point-like detector ≠ 2D information, once per treatment...

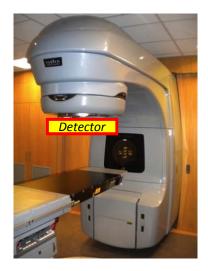
DIV for head&neck cancer treatment

Electronic Portal Imaging Device (EPID)

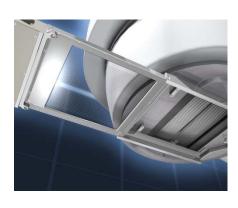
- Originally dedicated to patient repositioning
- Drawback: Distinction between the possible irradiation error and the patient's contribution? Impossible

Deployed EPID on a Linac

- → In any case, not efficient enough to prevent every possible error...
 - → Challenge: control the beam during each irradiation session

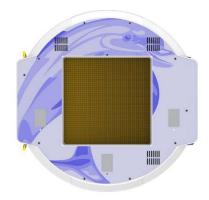

2D upstream detectors: toward a better quality assurance

The idea? Use of a bi-dimensional transmission-type detector


- Operate during irradiation session ✓
- Give 2D information ✓
- Located upstream of the patient ✓

Specifications?

- → Low and homogeneous beam attenuation
- → Lightweight
- → Wide enough to cover the whole beam
- → With embedded fast readout electronics



Some detectors have already been released

Detector PTW David

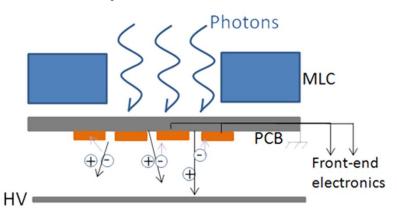
- → Good reconstruction of the shape of the beam
- → Poor in-beam fluence information

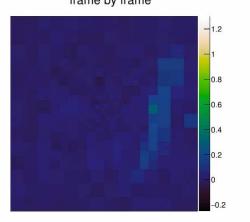
Detector IBA Dolphin

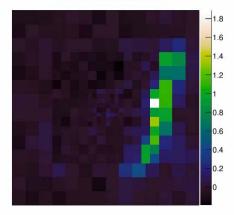
- → Good reconstruction of the overall photon fluence
- → Non-homogeneous beam attenuation

LPSC's contribution: TraDeRa (Transparent Detector for Radiotherapy)

Description


- 2D array of 324 ionization chambers
- Different sizes of electrodes (pixels)
- 20x20 cm² coverage
- High speed data collection thanks to in-house designed embedded electronics
- Measured homogeneous attenuation of approx. 2%




TraDeRa's printed circuit board (PCB)

Detection process

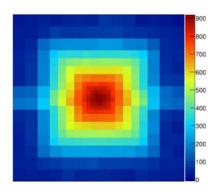
Can provide a complete 2D signal map of the photon fluence, during irradiation accumulated contents

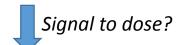
Simulation around the detector

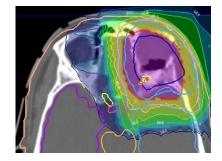
Why is that necessary?

Main objective: Dose reconstruction in a water tank (reference model for the patient) from the signal map given by TraDeRa (not trivial)

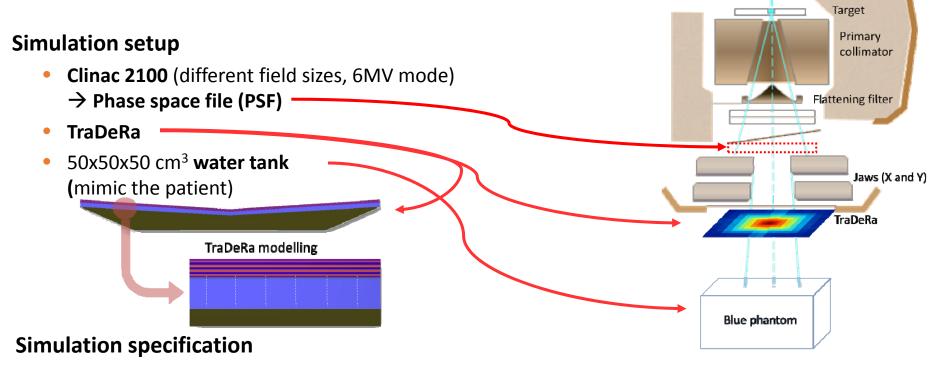
Impossibility to perform an absolute dose calibration of TraDeRa


Absolute dose = Physical dose that can be measured by a calibrated punctual ionization chamber


- Due to its size: Bragg-Gray cavity theory respected only if:
 - → small enough to not perturb the beam
 - → energy deposited only by electron passing through the cavity
- Due to the contaminant electrons coming from the Linac head (about 13% of the signal)
- → Relative dose calibration? How?

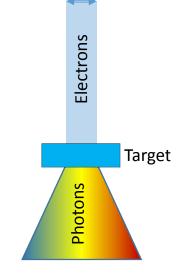

Relative dose = dose normalized to the absolute dose

Solution? Monte Carlo simulation (PENELOPE, Salvat et al.)


- Associate a 3D dose matrix in water/patient with the deposited energy in the TraDeRa air active volume
- Comparison with real measurements under Linac
- → To do so, necessity to reproduce a reference Linac...

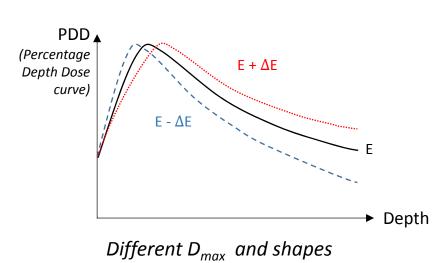
Geometry and simulation setup

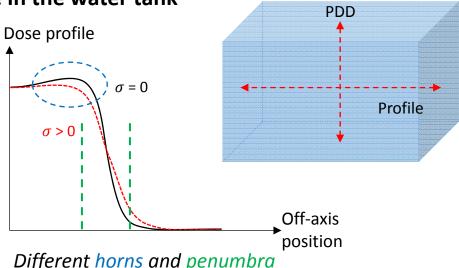
- Sending of 6×10^8 primary electrons through the target
 - → Represents approx. **8.3 CPU years** (25 days on 100 CPU)
 - → Mandatory to achieve a good level of precision (about 2% in the field)
- Hardwork on simulation optimization to keep a good simulation efficiency
 - → Especially in the target and the water tank
 - → Use of various variance reduction techniques
 - → How to correctly reproduce a reference Linac then...?


The importance of the simulation input parameters

Two parameters of importance to match with a reference accelerator beam (Clinac 2100 @ Grenoble Public Hospital (CHUG))

- Electron beam energy delivered by the acceleration structure (E)
- **Focal spot size** on the target (σ)

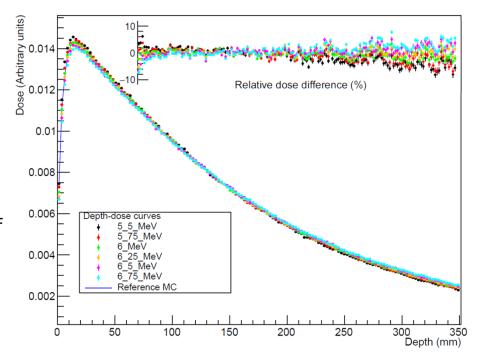

Objective: to get an accurate enough simulation **to compare with measurements** (square-shaped fields of different sizes)


 \rightarrow Unique set of parameters for each Linac (typically : E \in [5.85 ; 6.25] MeV for the 6MV mode and $\sigma \in$ [0.2 ; 1.5] mm)

 2σ

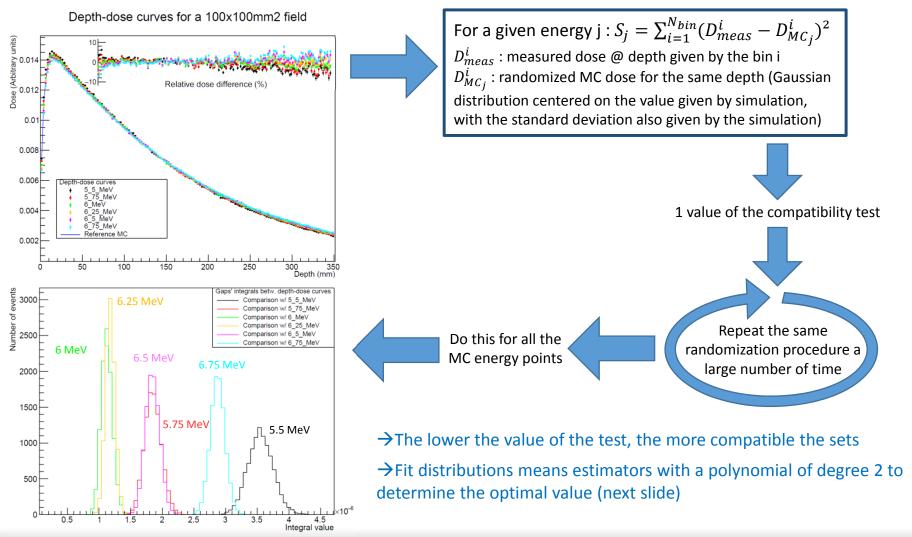
MC/measurements comparison method (example for energy)

Problem: Common tests used in medical physics (e.g.:gamma index) do **not consider MC** statistical uncertainty

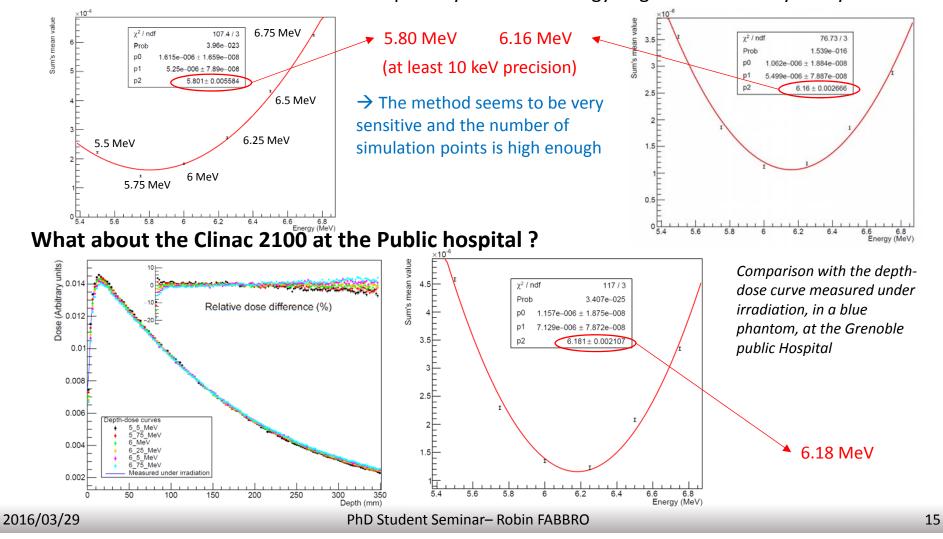

Objective: New comparison method including MC statistical uncertainty in the MC/measurements PDDs comparison?

- → Based on the ranking of compatibility level between each MC energy point and measurements
- → Can provide within minutes the parameters of a given accelerator

Data processing required:


- Data binning constrained by the number of measurement points
- Normalization to the integral of dose along the range of measurement points

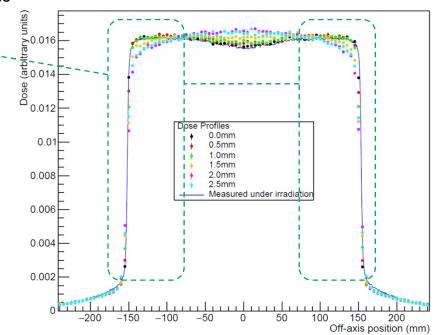
MC/measurements comparison method


The method I built? (For energy determination)

Validation (MC/MC agreement) and CHUG Clinac 2100 energy determination

2 MC/MC agreements: 5.7915 and 6.1591 MeV

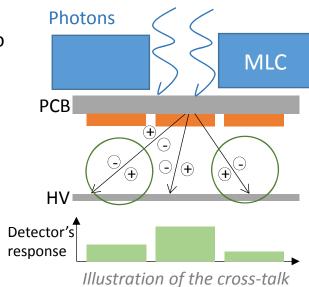
Simulation with « weird » values of primary electrons energy to get the sensitivity of my method


MC/measurements comparison method

For the focal spot size: same principle, a few differences

- A few more points to be simulated
- Use of dose profiles at different depths in the water tank (14, 50, 100 and 200 mm)
- Normalization remains to be tested (integral or dose to axis)
- Method won't be focused on the whole profiles
 - → Focused on horns and penumbra
 - → slight differences of shape here

Work in progress...


Dose profiles @ 14mm

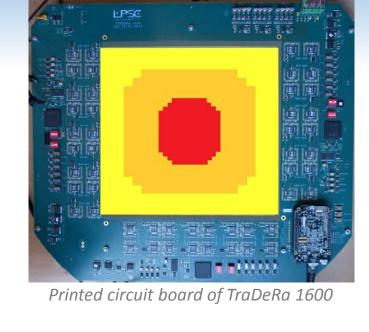
What to do with this simulation?

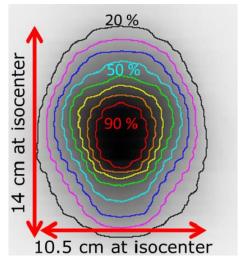
Main use: for my own purposes

- → **Huge simulation** with both input parameters corresponding to the Clinac @CHUG
- Quantify the "cross-talk" between one chamber and its neighbors
- Link between a pixel's response and the dose deposition
- Comparison of more complex plans with my simulation
- Association of a 3D dose matrix with a given detector's simulated response and comparison with the true response
 - → Next steps of my simulations

Other use: for clinical purposes

- → Determine the electrons beam parameters of **other medical accelerators**
- Information locked by medical linear accelerator manufacturers
- Will fit for any Clinac 2100 (and other accelerators with different geometries)


Radiotherapy service	Linac's primary electrons energy
Centre Léon Bérard (Lyon)	6.09 +/- 0,01 MeV
CH Métropole Savoie (Chambéry)	6.20 +/- 0,02 MeV


Developments around the detector

The last prototype: TraDeRa 1600

New features

- 1600 ionization chambers
- Coverage of 40x40 cm² fields (maximum field size available)
- New electrodes layout (my contribution to this prototype)

Superposition of EPID images from approx. 200 patients' treatments and 20 different locations (CHU Grenoble)

Optimized layout

- → Challenge: with a **limited number of electrodes**, provide **as much information as possible**
- Different layout from the square-shaped areas of the previous prototype
- Small electrodes full coverage of 50% iso-exposure area
- Medium electrodes coverage of nearly the whole 20% isoexposure area
 - → Much bigger area covered by small electrodes
 - → Waiting for tests under irradiation

Electronics calibration with a high dose rate source

Encountered issue: Each readout circuit of each electrode induces a different electronic gain

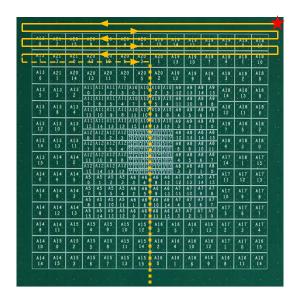
→ Necessity to calibrate this gain

Idea: homogeneously irradiate the whole active area of the detector

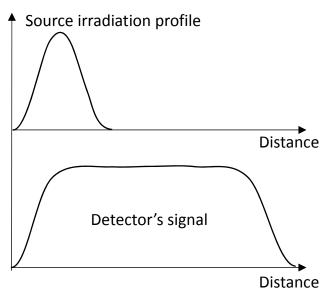
But, with a Linac...

- \rightarrow Flatness only achievable at a certain distance d_{ref} (medium dependent)
- \rightarrow Detector located at a distance << d_{ref} (under the Linac head, approx. 35 cm higher)
 - → Necessary to use another source of photons, with an equivalent energy and high enough flux

Solution: use of an high dose rate (HDR) curietherapy ⁶⁰Co source


- Used to treat prostate, uterus or breast cancer
- Activity: approx. **1.5Ci** (= 7.4×10^{10} Bq)
- Treatment currently proposed in the radiotherapy service of the CHUG

Electronics calibration with a high dose rate source


Scan the source over the detector, to mimic an homogeneous irradiation as seen by the detector

Micrometric displacement table and source support Design: J. Menu

Source trajectory over the detector

Profile of the source and detector's signal while scanning

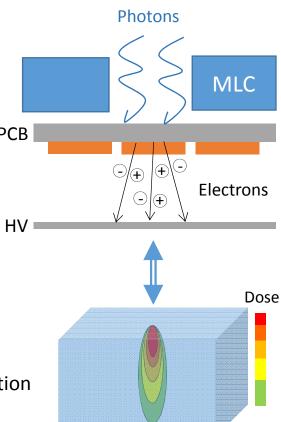
Electronics calibration with a high dose rate source

Preliminary experiment march 2016 @ CHUG: tested parameters

- Source-detector distance: from 1.25 to 2 cm
- Scan velocity: from 2.5 to 10 mm/s
- **Pitch:** from to 1 to 5 mm
 - → Analysis in progress, further experiment coming in a few days to perform a slow scan of source on the detector

My contribution to this experiment

- Table control software: upgrade of the existing version of control software
 - → Adaptive algorithm to perform of full scan of the detector, no matter the position of it
 - → Keyboard control
 - → Quality assessment of the table/software
- Experiment preparation and data acquisition


Conclusion & perspectives

Simulation input parameters determination: in progress

- Comparison method is robust
- Primary electrons energy has been determined
- Focal spot size of the electron beam on the target to be determined
- → Will give an accurate modelling of the Clinac 2100 at the Grenoble PCB hospital to perform the detector dose calibration
- → The method could be applied to any other clinical accelerators

Further simulation studies and detector developments:

- Pixels cross-talk study by simulation
- Association of one pixel response to the dose distribution in the water tank
- Complex plans comparisons between measurements and simulation
- Electronics gain calibration with High Dose Rate cobalt source in progress
- **1600 channels prototype** remains to be tested under irradiation
- → Next objectives of my thesis

Thank you for your attention