## The STEREO experiment: Status report



### Luis Manzanillas / LAPP

On behalf of the STEREO collaboration

### GDR neutrino Grenoble, June 2016







Laboratoire de Physique Subatomique et de Cosmologie





1

PROJECT

TUNDED BY THE AND

جا معة الحسن الثاني – الدار البيضاء UNIVERSITE HASSAN II - CASABLANCA

### Short baselines anomalies

- The reactor antineutrino anomaly (RAA) and gallium anomaly (GA) both show discrepancies with respect to the expectations at  $\sim 3\sigma$  level
- Oscillations into a light sterile neutrino state (Δm<sup>2</sup> ~1 eV) could account for such deficits



### The STEREO experiment



### The STEREO detector



2 m<sup>3</sup> of Gd loaded liquid scintillator (LS) **segmented** in 6 cells surrounded by unloaded LS (gamma catcher, GC)

n

Prompt

Gd

Delayed

### **IBD detection**: $\overline{\nu}_e + p \rightarrow e^+ + n$

Coincidence of Prompt ( $e^+$  + annihilation) and Delayed (n-Gd  $\approx \gamma$  cascade of 8MeV) signals in a time window of 50 µs 8 MeV

### **Detector response**

- Maximize uniformity between cells
- Expected resolution of 12% at 2 MeV
  - → Tiny difference between a central and a border cell!
- n capture efficiency: only 4% of difference between a central vs a border cell

### Detailed Geant4 simulation of the detector response



### The STEREO site and ILL reactor

- Very compact reactor core (diameter = 37 cm)
- ✓ 58 MW, highly <sup>235</sup>U enriched
- Water channel overburden, 15 m.w.e
- 10.2 m from reactor core to center of STEREO
- High n and gamma fluxMagnetic field from IN20
- $\rightarrow$  Need heavy shielding

(Lead + B4C + Polyethylene +soft iron, µ-metal)



SONGS

### Background

- Mapping of the STEREO casemate using Ge, Nal, He3 and Ne213 detectors
- Measurements of muon rates
- Mapping of magnetic field



**Directionality studies** 



- Main sources identified, extra protection added
- New campaign of measurements ongoing to validate shielding

### **External shielding**

- D19: 10 cm of lead + B4C
- Front Wall: Plug in H7 tube + 10 cm of polyethylene + 10 cm of Lead
- IN20: 10 cm of borated polyethylene + 15 cm of Lead + B4C
- Installation completed!



New record of speed lead wall mounting!





#### Luis MANZANILLAS

### Internal shielding

- Magnetic shielding (soft iron + μmetal delivery in June)
- 6 tons of polyethylene (delivery in July)
- 65 tons of lead (delivered and ready for mounting)



Mounting ongoing May 2016 ILL

### Muon veto

- 396x240x26 cm<sup>3</sup> of pure water with 4MU at 6 ppm
- 20 PMTs with 2 layers of µ-metal

- Efficiency > 99%
- Stable through time
- µ-veto ready to be moved to ILL (end July)!



### Inner detector

- Double stainless steel vessel
- Acrylic buffer between PMTs and LS
- VM2000 in the cell walls





Detector moved to ILL and ready for installation !!!



### The STEREO liquid

- Composition:
  - $\succ$  75% LAB → delivered
  - > 20% PXE  $\rightarrow$  column purified
  - > 5% DIN  $\rightarrow$  column purified
  - > PPO + bis-MSB  $\rightarrow$  ready
  - > Gd complex (0.2% Gd) + 1% THF  $\rightarrow$  ready



 Attenuation length > 5m in final mixture !





### PMTs

- HAMAMATSU R5912-100
  - > Quantum efficiency ≈ 30%
  - Dark rate: 3000 Hz
  - Peak / valley ratio: 2.7
  - Transit time spread: 3.5 ns



#### **PMT setup at MPIK Heidelberg**



All PMTs tested and installed in the inner detector!

### The calibration system

- Three subsystems:
  - > Automated circulation around detector → Energy scale (Each cell independently + GC + vertical dependence with collimation)
  - Automated movement under detector → n capture efficiency inter-calibration (1 reference point in each cell)
  - Three manual calibration tubes → Energy scale + n capture efficiency + vertical dependence (Two central and one border cell)



![](_page_13_Picture_6.jpeg)

Sources: <sup>22</sup>Na, AmBe, <sup>252</sup>Cf, n-H, n-Fe

Testing system  $\rightarrow$  installation in summer 2016

### Electronics

- Electronics hosted in a  $\mu$ TCA crate
- · Front-end boards tested and validated
  - > Qtot, Qtail, tCFD and pulse
  - 8-channel FADC 14 bits 250 MHz sampling
  - Gain x1 and x20 for SPE
  - First level trigger programmable
- Trigger board: second level programmable taking into account Target, Gamma Catcher and μ-veto
- LED board for light calibration (light injection at 3 vertical positions in each cell)
- Extensively tested using µ-veto

![](_page_14_Figure_10.jpeg)

#### µTCA crate

![](_page_14_Picture_12.jpeg)

Trigger board

![](_page_14_Picture_14.jpeg)

#### **PMT** basis

![](_page_14_Picture_16.jpeg)

#### 07-06-2016

### Data acquisition

- Data acquisition using NOMAD (standard ILL software)
- Slow control and monitoring ready
- All the chain successfully tested using LEDs

![](_page_15_Picture_4.jpeg)

### Installation status

- Tested detector and acquisition with LEDs in air
- $\rightarrow$  Fine tuning of simulation started
- Mounting of support structure ongoing
- Filling STEREO with LS in September

![](_page_16_Picture_5.jpeg)

Cell of LED: 87% Neighboring: ~11% GC: ~1% Other Cells: ~1%

![](_page_16_Picture_7.jpeg)

![](_page_16_Figure_8.jpeg)

# Expected sensitivity and first physics results

# Possible to exclude at $5\sigma$ the best fit parameters region with only 100 days of data! (expected 1st half 2017)

![](_page_17_Figure_2.jpeg)

- 400  $\nu$  events / day
- Signal / Bkg  $\approx 1.5$
- L0 = 10 m
- $E_{prompt} > 2MeV$

$$E_{delayed} > 5 MeV$$

• All systematics of predicted spectra

• 
$$\delta E_{scale} < 2\%$$

### Conclusions

- All large items delivered at ILL
- Reinforcement of casemate shielding completed
- Installation started  $\rightarrow$  mounting support structure
- Detector ready for filling  $\rightarrow$  September 2016
- Objective: commissioning in autumn 2016
  - $\rightarrow$  100 days of data taking before winter break
  - $\rightarrow$  First physics results, first half of 2017

### DATA IS COMING!!!

### Thanks for your attention!

![](_page_19_Picture_1.jpeg)

### Backup

#### RAA after Double-Chooz and Daya-Bay

![](_page_20_Figure_2.jpeg)

### Mounting procedure

![](_page_21_Figure_1.jpeg)