NEUTRINO MASSES AND MIXING CIRCA 2016

Concha Gonzalez-Garcia (ICREA U. Barcelona & YITP Stony Brook) Neutrino GdR, June 16th, 2016

NEUTRINO MASSES AND MIXING CIRCA 2016

Concha Gonzalez-Garcia (ICREA U. Barcelona & YITP Stony Brook)

OUTLINE

Determination of 3ν Lepton Flavour Parameters Extensions: Light Sterile $\nu's$, Non-standard ν Interactions

ν in the SM

The SM is a gauge theory based on the symmetry group

 $SU(3)_C \times SU(2)_L \times U(1)_Y \Rightarrow SU(3)_C \times U(1)_{EM}$

$(1,2)_{-\frac{1}{2}}$ $(3,2)_{\frac{1}{6}}$	$(1, 1)_{-1}$	$(3,1)_{\frac{2}{3}}$	$(3,1)_{-\frac{1}{3}}$
$\left \left(\begin{array}{c} \boldsymbol{\nu_e} \\ e \end{array} \right)_L \left(\begin{array}{c} u^i \\ d^i \end{array} \right)_L \right.$	e_R	u_R^i	d_R^i
$\left(\begin{array}{c} \boldsymbol{\nu_{\mu}} \\ \boldsymbol{\mu} \end{array}\right)_{L} \left(\begin{array}{c} c^{i} \\ s^{i} \end{array}\right)_{L}$	μ_R	c_R^i	s_R^i
$\left(\begin{array}{c} \boldsymbol{\nu_{\tau}} \\ \boldsymbol{\tau} \end{array}\right)_{L} \left(\begin{array}{c} t^{i} \\ b^{i} \end{array}\right)_{L}$	$ au_R$	t_R^i	b_R^i

There is no ν_R

ν in the SM

The SM is a gauge theory based on the symmetry group

 $SU(3)_C \times SU(2)_L \times U(1)_Y \Rightarrow SU(3)_C \times U(1)_{EM}$

$(1,2)_{-\frac{1}{2}}$ $(3,2)_{\frac{1}{6}}$	$(1, 1)_{-1}$	$(3,1)_{\frac{2}{3}}$	$(3,1)_{-\frac{1}{3}}$
$\left \left(\begin{array}{c} \boldsymbol{\nu_e} \\ e \end{array} \right)_L \left(\begin{array}{c} u^i \\ d^i \end{array} \right)_L \right.$	e_R	u_R^i	d_R^i
$\left(\begin{array}{c}\nu_{\mu}\\\mu\end{array}\right)_{L}\left(\begin{array}{c}c^{i}\\s^{i}\end{array}\right)_{L}$	μ_R	c_R^i	s_R^i
$\left(\begin{array}{c} \nu_{\tau} \\ \tau \end{array}\right)_{L} \left(\begin{array}{c} t^{i} \\ b^{i} \end{array}\right)_{L}$	$ au_R$	t_R^i	b_R^i

There is no ν_R \downarrow Accidental global symmetry: $B \times L_e \times L_\mu \times L_\tau$ \downarrow ν strictly massless

- By 2016 we have observed with high (or good) precision:
 - * Atmospheric ν_{μ} & $\bar{\nu}_{\mu}$ disappear most likely to ν_{τ} (SK,MINOS, ICECUBE)
 - * Accel. ν_{μ} & $\bar{\nu}_{\mu}$ disappear at $L \sim 300/800$ Km (K2K, **T2K**, **MINOS**, **NO** ν **A**)
 - * Some accelerator ν_{μ} appear as ν_{e} at $L \sim 300/800$ Km (**T2K**, MINOS, NO ν A)
 - * Solar ν_e convert to ν_{μ}/ν_{τ} (Cl, Ga, SK, SNO, Borexino)
 - * Reactor $\overline{\nu_e}$ disappear at $L \sim 200$ Km (KamLAND)
 - * Reactor $\overline{\nu_e}$ disappear at $L \sim 1$ Km (D-Chooz, **Daya Bay, Reno**)

- By 2016 we have observed with high (or good) precision:
 - * Atmospheric ν_{μ} & $\bar{\nu}_{\mu}$ disappear most likely to ν_{τ} (SK,MINOS, ICECUBE)
 - * Accel. ν_{μ} & $\bar{\nu}_{\mu}$ disappear at $L \sim 300/800$ Km (K2K, **T2K**, **MINOS**, **NO** ν **A**)
 - * Some accelerator ν_{μ} appear as ν_{e} at $L \sim 300/800$ Km (**T2K**, MINOS, NO ν A)
 - * Solar ν_e convert to ν_{μ}/ν_{τ} (Cl, Ga, SK, SNO, Borexino)
 - * Reactor $\overline{\nu_e}$ disappear at $L \sim 200$ Km (KamLAND)
 - * Reactor $\overline{\nu_e}$ disappear at $L \sim 1$ Km (D-Chooz, **Daya Bay, Reno**)

All this implies that L_{α} are violated and There is Physics Beyond SM

- By 2016 we have observed with high (or good) precision:
 - * Atmospheric ν_{μ} & $\bar{\nu}_{\mu}$ disappear most likely to ν_{τ} (SK,MINOS, ICECUBE)
 - * Accel. ν_{μ} & $\bar{\nu}_{\mu}$ disappear at $L \sim 300/800$ Km (K2K, **T2K**, **MINOS**, **NO** ν **A**)
 - * Some accelerator ν_{μ} appear as ν_{e} at $L \sim 300/800$ Km (**T2K**, MINOS, NO ν A)
 - * Solar ν_e convert to ν_{μ}/ν_{τ} (Cl, Ga, SK, SNO, Borexino)
 - * Reactor $\overline{\nu_e}$ disappear at $L \sim 200$ Km (KamLAND)
 - * Reactor $\overline{\nu_e}$ disappear at $L \sim 1$ Km (D-Chooz, **Daya Bay, Reno**)

All this implies that L_{α} are violated

and There is Physics Beyond SM

• The *important* question:

What is the BSM theory?

• The *starting* path:

Precise determination of the low energy parametrization

The New Minimal Standard Model

- Minimal extension to introduce L_{α} violation \Rightarrow give Mass to the Neutrino:
 - * Introduce ν_R AND impose L conservation \Rightarrow Dirac $\nu \neq \nu^c$: $\mathcal{L} = \mathcal{L}_{SM} - M_{\nu} \overline{\nu_L} \nu_R + h.c.$

* NOT impose L conservation
$$\Rightarrow$$
 Majorana $\nu = \nu^c$

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{2}M_{\nu}\overline{\nu_L}\nu_L^C + h.c.$$

The New Minimal Standard Model

- Minimal extension to introduce L_{α} violation \Rightarrow give Mass to the Neutrino:
 - * Introduce ν_R AND impose L conservation \Rightarrow Dirac $\nu \neq \nu^c$:

$$\mathcal{L} = \mathcal{L}_{SM} - M_{\nu} \overline{\nu_L} \nu_R + h.c.$$

* NOT impose L conservation \Rightarrow Majorana $\nu = \nu^c$

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{2}M_{\nu}\overline{\nu_L}\nu_L^C + h.c.$$

• The charged current interactions of leptons are not diagonal (same as quarks)

The New Minimal Standard Model

- Minimal Extensions to give Mass to the Neutrino:
 - * Introduce ν_R AND impose L conservation \Rightarrow Dirac $\nu \neq \nu^c$:

$$\mathcal{L} = \mathcal{L}_{SM} - M_{\nu} \overline{\nu_L} \nu_R + h.c.$$

* NOT impose L conservation \Rightarrow Majorana $\nu = \nu^c$

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{2}M_{\nu}\overline{\nu_L}\nu_L^C + h.c.$$

• The charged current interactions of leptons are not diagonal (same as quarks)

$$\frac{g}{\sqrt{2}}W^+_{\mu}\sum_{ij}\left(U^{ij}_{\text{LEP}}\,\overline{\ell^i}\,\gamma^{\mu}\,L\,\nu^j + U^{ij}_{\text{CKM}}\,\overline{U^i}\,\gamma^{\mu}\,L\,D^j\right) + h.c.$$

• In general for N = 3 + m massive neutrinos U_{LEP} is $3 \times N$ matrix

$$U_{LEP}U_{LEP}^{\dagger} = I_{3\times 3}$$
 but in general $U_{LEP}^{\dagger}U_{LEP} \neq I_{N\times N}$

• U_{LEP} : 3(N-2) angles + 2N - 5 Dirac phases + N - 1 Majorana phases

Effects of ν **Mass: Oscillations**

• If neutrinos have mass, a weak eigenstate $|\nu_{\alpha}\rangle$ produced in $l_{\alpha} + N \rightarrow \nu_{\alpha} + N'$

is a linear combination of the mass eigenstates $(|\nu_i\rangle)$: $|\nu_{\alpha}\rangle = \sum_{i=1}^{n} U_{\alpha i} |\nu_i\rangle$

• After a distance L it can be detected with flavour β with probability

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4\sum_{j\neq i}^{n} \operatorname{Re}[U_{\alpha i}^{\star}U_{\beta i}U_{\alpha j}U_{\beta j}^{\star}]\sin^{2}\left(\frac{\Delta_{ij}}{2}\right) + 2\sum_{j\neq i}\operatorname{Im}[U_{\alpha i}^{\star}U_{\beta i}U_{\alpha j}U_{\beta j}^{\star}]\sin\left(\Delta_{ij}\right)$$
$$\frac{\Delta_{ij}}{2} = \frac{(E_{i} - E_{j})L}{2} = 1.27\frac{(m_{i}^{2} - m_{j}^{2})}{eV^{2}}\frac{L/E}{\mathrm{Km/GeV}}$$

No information on ν mass scale nor Majorana versus Dirac

Matter Effects

• If ν cross matter regions (Sun, Earth...) it interacts coherently

 \Rightarrow Effective potential in ν evolution : $V_e \neq V_{\mu,\tau} \Rightarrow \Delta V^{\nu} = -\Delta V^{\bar{\nu}} = \sqrt{2}G_F N_e$

 \Rightarrow Modification of mixing angle and oscillation wavelength \equiv MSW effect

• The mixing angle in matter

$$\sin(2\theta_m) = \frac{\Delta m^2 \sin(2\theta)}{\sqrt{(\Delta m^2 \cos(2\theta) - 2E\Delta V)^2 + (\Delta m^2 \sin(2\theta))^2}}$$

• For solar neutrinos in adiabatic regime

$$P(\nu_e \to \nu_e) = \frac{1}{2} \left[1 + \cos(2\theta_m) \cos(2\theta) \right]$$

- By 2016 we have observed with high (or good) precision:
 - * Atmospheric ν_{μ} & $\bar{\nu}_{\mu}$ disappear most likely to ν_{τ} (SK,MINOS, ICECUBE)
 - * Accel. ν_{μ} & $\bar{\nu}_{\mu}$ disappear at $L \sim 300/800$ Km (K2K, **T2K**, **MINOS**, **NO** ν **A**)
 - * Some accelerator ν_{μ} appear as ν_{e} at $L \sim 300/800$ Km (T2K, MINOS, NO ν A)
 - * Solar ν_e convert to ν_{μ}/ν_{τ} (Cl, Ga, SK, SNO, Borexino)
 - * Reactor $\overline{\nu_e}$ disappear at $L \sim 200$ Km (KamLAND)
 - * Reactor $\overline{\nu_e}$ disappear at $L \sim 1 \text{ Km}$ (D-Chooz, **Daya Bay, Reno**)
- Confirmed_{Vacuum} oscillation L/E pattern with 2 frequencies

3*v* **Flavour Parameters**

Concha Gonzalez-Garcia

• For for 3 ν 's : 3 Mixing angles + 1 Dirac Phase + 2 Majorana Phases

$$U_{\text{LEP}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta_{\text{CP}}} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta_{\text{CP}}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{21} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{i\eta_1} & 0 & 0 \\ 0 & e^{i\eta_2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

_

Neutrino Masses and Mixing ci 3ν Flavour Parameters

Concha Gonzalez-Garcia

• For for 3 ν 's : 3 Mixing angles + 1 Dirac Phase + 2 Majorana Phases

$$U_{\text{LEP}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta_{\text{CP}}} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta_{\text{CP}}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{21} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{\delta} & 0 & 0 \\ 0 & e^{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

• Two Possible Orderings

Experiment	Dominant Dependence	Important Dependence
Solar Experiments	$ ightarrow heta_{12}$	Δm^2_{21} , $ heta_{13}$
Reactor LBL (KamLAND)	$ ightarrow \Delta m^2_{21}$	$ heta_{12}$, $ar{ heta}_{13}$
Reactor MBL (Daya Bay, Reno, D	$\textbf{O-Chooz}) \rightarrow \theta_{13}$	$\Delta m^2_{ m atm}$
Atmospheric Experiments	$ ightarrow heta_{23}$	$\Delta m^2_{ m atm}$, $ heta_{13}$, $\delta_{ m cp}$
Acc LBL ν_{μ} Disapp (Minos, T2K,	NOvA) $\rightarrow \Delta m_{\rm atm}^2$	θ_{23}
Acc LBL ν_e App (Minos, T2K, NC	$(vA) \rightarrow \theta_{13}$	$\delta_{ m cp}$, $ heta_{23}$

Neutrino Mas 3 v Flavour Parameters: Status in 6/2016 pralez-Garcia

Global 6-parameter fit http://www.nu-fit.org (ArXiv:1409.5439) Maltoni, Schwetz, Martinez-Soler, Esteban, MCG-G

3 ν **Analysis: "12" Sector and** θ_{13}

• For $\theta_{13} = 0$

 $\sin^2 \theta_{12} = \begin{cases} 0.3 \text{ From Solar} \\ 0.325 \text{ From KLAND} \end{cases}$

3 ν **Analysis: "12" Sector and** θ_{13}

• For $\theta_{13} = 0$

• When θ_{13} increases

 $P_{ee} \simeq \begin{cases} \text{Solar High E} : c_{13}^4 \sin^2 2\theta_{12} \\ \text{Solar Low E} : c_{13}^4 \left(1 - \sin^2 2\theta_{12}/2\right) \\ \text{Kam} : c_{13}^4 \left(1 - \sin^2 2\theta_{12} \sin^2 \frac{\Delta m_{21}^2 L}{4E}\right) \end{cases}$

 \Rightarrow KamLAND region shifts left

 \Rightarrow Solar slight shifts right (due to High E)

$$\sin^2 \theta_{12} = \begin{cases} 0.3 \text{ From Solar} \\ 0.325 \text{ From KLAND} \end{cases}$$

3 ν **Analysis: "12" Sector and** θ_{13}

• For $\theta_{13} \simeq 9^{\circ}$

• When θ_{13} increases

$$P_{ee} \simeq \begin{cases} \text{Solar High E} : c_{13}^4 \sin^2 2\theta_{12} \\ \text{Solar Low E} : c_{13}^4 \left(1 - \sin^2 2\theta_{12}/2\right) \\ \text{Kam} : c_{13}^4 \left(1 - \sin^2 2\theta_{12} \sin^2 \frac{\Delta m_{21}^2 L}{4E}\right) \end{cases}$$

- \Rightarrow KamLAND region shifts left
- \Rightarrow Solar slight shifts right (due to High E)

 $\Rightarrow \text{Good match of best fit } \theta_{12}$ $\Rightarrow \text{Residual tension on } \Delta m_{21}^2$

Issues in 3 ν Analysis: Δm_{21}^2 KamLAND vs SOLAR

For $\theta_{13} \simeq 9^{\circ} \theta_{12}$ OK. But residual tension on Δm_{12}^2 [NuFIT 2.1 (2016)]

Tension related to: a)"too large" of Day/Night at SK

Nei

b) smaller-than-expectedlow-E turn up from MSWat best global fit

Modified matter potential?

Issues with the Solar Fluxes

Newer determination of abundance of heavy elements in solar surface give lower values
Solar Models with these lower metalicities fail in reproducing helioseismology data

– Two sets of SSM:

Starting from Bahcall etal 05, Serenelli etal 0909.2668

GS98 uses older metalicities

AGSXX uses newer metalicities

Flux cm ⁻² s ⁻¹	GS98	AGSS09	Diff (%)
$pp/10^{10}$	5.97	$6.03~(1\pm 0.005)$	0.8
$pep/10^{8}$	1.41	$1.44~(1\pm 0.010)$	2.1
$hep/10^{3}$	7.91	$8.18~(1\pm 0.15)$	3.4
⁷ Be/10 ⁹	5.08	$4.64~(1\pm 0.06)$	8.8
⁸ B/10 ⁶	5.88	$4.85~(1\pm 0.12)$	17.7
13 N/10 ⁸	2.82	$2.07(1^{+0.14}_{-0.13})$	26.7
15 O/10 ⁸	2.09	$1.47 \ (1^{+0.16}_{-0.15})$	30.0
17 F/10 ¹⁶	5.65	$3.48(1^{+0.17}_{-0.16})$	38.4

Most difference in CNO fluxes

Issues with the Solar Fluxes

Newer determination of abundance of heavy elements in solar surface give lower values
Solar Models with these lower metalicities fail in reproducing helioseismology data

– Two sets of SSM:

Starting from Bahcall etal 05, Serenelli etal 0909.2668

GS98 uses older metalicities

AGSXX uses newer metalicities

Flux cm ⁻² s ⁻¹	GS98	AGSS09	Diff (%)
$pp/10^{10}$	5.97	$6.03~(1\pm 0.005)$	0.8
$pep/10^{8}$	1.41	$1.44~(1\pm 0.010)$	2.1
$hep/10^{3}$	7.91	$8.18~(1\pm 0.15)$	3.4
⁷ Be/10 ⁹	5.08	$4.64~(1\pm 0.06)$	8.8
⁸ B/10 ⁶	5.88	$4.85~(1\pm 0.12)$	17.7
13 N/10 ⁸	2.82	$2.07(1^{+0.14}_{-0.13})$	26.7
15 O/10 ⁸	2.09	$1.47 \ (1^{+0.16}_{-0.15})$	30.0
17 F/10 ¹⁶	5.65	$3.48(1^{+0.17}_{-0.16})$	38.4

Most difference in CNO fluxes

Issues with the Solar Fluxes

Newer determination of abundance of heavy elements in solar surface give lower values
Solar Models with these lower metalicities fail in reproducing helioseismology data

– Two sets of SSM:

Starting from Bahcall etal 05, Serenelli etal 0909.2668

GS98 uses older metalicities

AGSXX uses newer metalicities

–Impact in Osc Parameter Determination

Neglegeable \Rightarrow Possible to Invert and Extract Fluxes from Data.

Neutrino Masco and Mixing circo 2016 Learning how the Sun Shines with $\nu's$

Results of Oscillation analysis with solar flux normalizations free: $f_i = \frac{\Phi_i}{\Phi_i^{GS98}}$

Bergstrom,MCG-G,Maltoni,Peña-Garay,Serenelli, Song, ArXiv:1601:00972 Present limit on CNO:

$$\frac{L_{\rm CNO}}{L_{\odot}} < 2\% (3\sigma)$$

Test of Luminosity Constraint: $\frac{L_{\odot}(\nu - \text{inferred})}{L_{\odot}} = 1.04 \pm 0.07$

Comparing with the Models: Both statistically equally probable

New experiments needed more sensitive to CNO fluxes

New models with new Nuclear Rates New problems with Helioseismology Bergstrom,MCG-G,Maltoni, Peña-Garay,Serenelli,Song, in preparation

3 ν Analysis: "23" Sector ATM and LBL Disapp

- $*\Delta m^2_{3\ell}$ consistent in all experiments
- * slightly better by T2K-DIS
- * Minos-DIS slight favour non-maximal θ_{23}
- * T2K-DIS favours maximal (best precision)
- * $\theta_{31} \neq 0 \Rightarrow$ *ATM sensitivity to octant θ_{23} & sign Δm_{31}^2 Slight preference $\theta_{13} < 45^\circ$ in ATMOS NO

(In all curves θ_{13} , Δm_{21}^2 , θ_{12} minimized over SOLAR+REACTOR)

Issues in 3 ν **Analysis: Reactor Flux anomaly and** θ_{13}

• The reactor $\bar{\nu}_e$ fluxes have been recalculated

T.A. Mueller et al.,[arXiv:1101.2663].;P. Huber, [arXiv:1106.0687].

 \bullet Both reevaluations find higher fluxes by about 3.5 %

- For 3ν analysis a consistent approach (T. Schwetz et. al. [arXiv:1103.0734]):
 - Fit oscillation parameters and reactor fluxes simultaneously
 - Use theoretical calculation and/or RSBL data as priors

Issues in 3 ν Analysis: Reactor Flux anomaly and θ_{13}

- Experiments without near detector (CHOOZ, Palo-Verde) sensitive to the flux assumptions
- DAYA BAY, RENO, D-CHOOZ
 Near-Far comparison
 ⇒ results flux independent
- Two extreme priors :

a) Use fluxes from Huber 1106.0687 without RSBL data

 $\sin^{2} \theta_{13} = 0.0217^{+0.0013}_{-0.001}$ b) Leave flux free and include RSBL $\sin^{2} \theta_{13} = 0.0223^{+0.0013}_{-0.001}$ Uncertainty at $\lesssim 0.5\sigma$ level $\chi^{2}_{min,a} - \chi^{2}_{min,b} \sim 7$

3 ν Analysis: Long Baseline vs REACT and $|\Delta m_{3l}^2|$

Independent and consistent determination of $|\Delta m_{3l}^2|$ from MBL reactor data In particular from Daya Bay (also Reno and DC) near/far E Spectrum

3 ν Analysis: LBL vs REACT and θ_{23} , Ordering, δ_{CP}

• In LBL APP $\nu_{\mu} \rightarrow \nu_{e}$

$$P_{\mu e} \simeq s_{23}^2 \sin^2 2\theta_{13} \left(\frac{\Delta_{31}}{\Delta_{31} \pm V}\right)^2 \sin^2 \left(\frac{\Delta_{31} \pm V L}{2}\right) +8 J_{CP}^{\max} \frac{\Delta_{12}}{V} \frac{\Delta_{31}}{\Delta_{31} \pm V} \sin\left(\frac{VL}{2}\right) \sin\left(\frac{\Delta_{31} \pm VL}{2}\right) \cos\left(\frac{\Delta_{31}L}{2} \pm \delta_{CP}\right)$$

 $J_{\rm CP}^{\rm max} = c_{13}^2 s_{13} c_{23} s_{23} c_{12} s_{12}$

So
$$\sin^2 2\theta_{APP} = 2\sin^2 \theta_{23} \sin^2 2\theta_{13}$$

• In Reactor
$$P_{ee} \simeq \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta_{31} L}{2}\right)$$

So $\sin^2 2\theta_{\text{REAC}} = \sin^2 2\theta_{13}$

-So from first term in $P_{\mu e}$: $\sin^2 2\theta_{\text{REAC}} \leq \sin^2 2\theta_{\text{APP}} \Rightarrow \theta_{23} \geq \frac{\pi}{4}$ favoured

-Or from second term in $P_{\mu e}$: $\Rightarrow \delta \sim \frac{3\pi}{2} (\equiv -\frac{\pi}{2})$ favoured

3 ν Analysis: LBL vs REACT and θ_{23} , Ordering, δ_{CP}

• In LBL APP
$$\nu_{\mu} \rightarrow \nu_{e}$$

 $P_{\mu e} \simeq s_{23}^{2} \sin^{2} 2\theta_{13} \left(\frac{\Delta_{31} \pm V}{\Delta_{31} \pm V}\right)^{2} \sin^{2} \left(\frac{\Delta_{31} \pm V L}{2}\right)$
 $+8 J_{CP}^{max} \frac{\Delta_{12}}{\Delta_{31} \pm V} \sin \left(\frac{V_{L}}{2}\right) \sin \left(\frac{\Delta_{31} \pm V L}{2}\right) \cos \left(\frac{\Delta_{31} L}{2} \pm \delta_{CP}\right)$
 $J_{CP}^{max} = c_{13}^{2} s_{13} c_{23} s_{23} c_{12} s_{12}$
So $\sin^{2} 2\theta_{APP} = 2 \sin^{2} \theta_{23} \sin^{2} 2\theta_{13}$
• In Reactor $P_{ee} \simeq \sin^{2} 2\theta_{13} \sin^{2} \left(\frac{\Delta_{31} L}{2}\right)$
So $\sin^{2} 2\theta_{REAC} = \sin^{2} 2\theta_{13}$
 $-So from first term in $P_{\mu e}$:
 $\sin^{2} 2\theta_{REAC} \le \sin^{2} 2\theta_{APP} \Rightarrow \theta_{23} \ge \frac{\pi}{4}$ favoure $\frac{3\pi}{2}$
 $-Or from second term in $P_{\mu e}$:
 $\Rightarrow \delta \sim \frac{3\pi}{2} (\equiv -\frac{\pi}{2})$ favoured$$

Concha Gonzalez-Garcia

3 ν Analysis: LBL vs REACT and θ_{23} , Ordering, δ_{CP}

• In LBL APP
$$\nu_{\mu} \rightarrow \nu_{e}$$

 $P_{\mu e} \simeq s_{23}^{2} \sin^{2} 2\theta_{13} \left(\frac{\Delta_{31}}{\Delta_{31} \pm V}\right)^{2} \sin^{2} \left(\frac{\Delta_{31} \pm V L}{2}\right)$
 $+8 J_{CP}^{max} \frac{\Delta_{12}}{V} \frac{\Delta_{31}}{\Delta_{31} \pm V} \sin\left(\frac{VL}{2}\right) \sin\left(\frac{\Delta_{31} \pm VL}{2}\right) \cos\left(\frac{\Delta_{31} L}{2} \pm \delta_{CP}\right)$
 $J_{CP}^{max} = c_{13}^{2} s_{13} c_{23} s_{23} c_{12} s_{12}$
So $\sin^{2} 2\theta_{APP} = 2 \sin^{2} \theta_{23} \sin^{2} 2\theta_{13}$
• In Reactor $P_{ee} \simeq \sin^{2} 2\theta_{13} \sin^{2} \left(\frac{\Delta_{31} L}{2}\right)$
So $\sin^{2} 2\theta_{REAC} = \sin^{2} 2\theta_{13}$
-So from first term in $P_{\mu e}$:
 $\sin^{2} 2\theta_{REAC} \le \sin^{2} 2\theta_{APP} \Rightarrow \theta_{23} \ge \frac{\pi}{4}$ favoured

-Or from second term in $P_{\mu e}$: $\Rightarrow \delta \sim \frac{3\pi}{2} (\equiv -\frac{\pi}{2})$ favoured

Inclusion of NOvA-LEM \Rightarrow shift in favoured order

Neutrino Masses and Mixing circa 2016

Concha Gonzalez-Garcia

3ν Analysis: Leptonic CP violation

Inclusion of NOvA-LEM: * Stronger CP "hint" for IO * But NO globally favoured \Rightarrow Present significance of CPV NO: $\delta_{CP} = 272^{+61}_{-64}$ $(0 \rightarrow 360 \text{ allowed at } 3\sigma)$ IO: $\delta_{CP} = 256 \pm 43$ $(21 \rightarrow 131 \text{ excluded at } 3\sigma)$

3ν Analysis: Leptonic CP violation

Leptonic Jarlskog determinant $J_{\rm CP} = c_{12}s_{12}c_{23}s_{23}c_{13}^2s_{13}\sin\delta_{\rm CP}$

Compared to the quark sector $J_{\text{CMK}} = (3.06^{+0.21}_{-0.20}) \times 10^{-5}$

Near Future for CP and Ordering: Strategies

• $\nu/\bar{\nu}$ comparison with or without Earth matter effects in $\nu_{\mu} \rightarrow \nu_{e} \& \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ at LBL: DUNE (wide band beam, L=1300 km), HK (narrow band beam, L=300 km)

$$P_{\mu e} \simeq s_{23}^2 \sin^2 2\theta_{13} \left(\frac{\Delta_{31}}{\Delta_{31} \pm V}\right)^2 \sin^2 \left(\frac{\Delta_{31} \pm V L}{2}\right) +8 J_{\rm CP}^{\rm max} \frac{\Delta_{12}}{V} \frac{\Delta_{31}}{\Delta_{31} \pm V} \sin \left(\frac{VL}{2}\right) \sin \left(\frac{\Delta_{31} \pm VL}{2}\right) \cos \left(\frac{\Delta_{31} L}{2} \pm \delta_{CP}\right)$$

 $J_{\rm CP}^{\rm max} = c_{13}^2 s_{13} c_{23} s_{23} c_{12} s_{12}$

- Challenge: Parameter degeneracies, Normalization uncertainty, E_{ν} reconstruction
- Earth matter effects in large statistics ATM ν_{μ} disapp : HK,INO, PINGU,ORCA ... – Challenge: ATM flux contains both ν_{μ} and $\bar{\nu}_{\mu}$, ATM flux uncertainties
- Reactor experiment at $L \sim 60$ km (vacuum) able to observe the difference between oscillations with Δm_{31}^2 and Δm_{32}^2 : JUNO, RENO-50

$$P_{\nu_e,\nu_e} = 1 - c_{13}^4 \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E}\right) - \sin^2 2\theta_{13} \left[c_{12}^2 \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right) + s_{12}^2 \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E}\right)\right]$$

- Challenge: Energy resolution

Neutrino Mass Scale

Single β decay : Dirac or Majorana ν mass modify spectrum endpoint

$$m_{\nu_e}^2 = \sum m_j^2 |U_{ej}|^2 = c_{13}^2 c_{12}^2 m_1^2 + c_{13}^2 s_{12}^2 m_2^2 + s_{13}^2 m_3^2$$

Present bound: $m_{\nu_e} \le 2.2 \text{ eV}$ (at 95 % CL)

Neutrino Mass Scale

Single β decay : Dirac or Majorana ν mass modify spectrum endpoint

$$\begin{split} m_{\nu_e}^2 &= \sum m_j^2 |U_{ej}|^2 = c_{13}^2 c_{12}^2 m_1^2 + c_{13}^2 s_{12}^2 m_2^2 + s_{13}^2 m_3^2 \\ \text{Present bound:} \ m_{\nu_e} &\leq 2.2 \text{ eV} \quad (\text{at 95 \% CL}) \end{split}$$

$0\nu\beta\beta$ **Decay: Present**

Bounds from ¹³⁶Xe (EXO and KamLAND-ZEN), ⁷⁶Ge (Gerda) and ¹³⁰Te (Cuore-0)

KamLAND-Zen Coll. ArXiv:1505.02889

Neutrino Mass Scale

Single β decay : Dirac or Majorana ν mass modify spectrum endpoint

$$\begin{split} m_{\nu_e}^2 &= \sum m_j^2 |U_{ej}|^2 = c_{13}^2 c_{12}^2 m_1^2 + c_{13}^2 s_{12}^2 m_2^2 + s_{13}^2 m_3^2 \\ \text{Present bound:} \ m_{\nu_e} &\leq 2.2 \text{ eV} \quad (\text{at 95 \% CL}) \end{split}$$

COSMO Neutrino mass (Dirac or Majorana) modify the growth of structures

$$\sum m_i$$

Neutrino Mass Scale: The Cosmo-Lab Connection

Global oscillation analysis

 $\Rightarrow \text{Correlations } m_{\nu_e}, m_{ee} \text{ and } \sum m_{\nu}$ (Fogli *et al* (04))

Nufit (95%)

Neutrino Mass Scale: The Cosmo-Lab Connection

Global oscillation analysis

 $\Rightarrow \text{Correlations } m_{\nu_e}, m_{ee} \text{ and } \sum m_{\nu}$ (Fogli *et al* (04))

Nufit (95%)

Width due to range in oscillation parameters very narrow High precision determination of m_{ν_e} and $\sum m_i$ can give information on ordering

Wide band due to unknown Majorana phases \Rightarrow Possible Det of Maj phases If Matrix Element Uncertainty Reduced

Neutrino Mass Scale: The Cosmo-Lab Connection

Global oscillation analysis

 $\Rightarrow \text{Correlations } m_{\nu_e}, m_{ee} \text{ and } \sum m_{\nu}$ (Fogli *et al* hep-ph/0408045)

Nufit (95%)

Presently only Bounds

- From Tritium β decay (Mainz & Troisk expe) $m_{\nu_e} < 2.2 \text{ eV} (95\%)$ Katrin (2016?) Sensitivity to $m_{\nu_e} \sim 0.2 \text{ eV}$
- From $0\nu\beta\beta$ decay for Majorana Neutrinos $m_{ee} < 0.06 - 0.15 \text{ eV} (90\%)$ Goal of Next Decade $\Rightarrow m_{ee}$ at IO
- From Analysis of Cosmological data Bound on $\sum m_{\nu}$ changes with: cosmo parameters fix in analysis cosmo observables considered

Model	Observables	Σm_{ν} (eV) 95%
$\Lambda \text{CDM} + m_{\nu}$	Planck TT + lowP	≤ 0.72
$\Lambda \text{CDM} + m_{\nu}$	Planck TT + lowP + lensing	≤ 0.68
$\Lambda \text{CDM} + m_{\nu}$	Planck TT,TE,EE + lowP+lensing	≤ 0.59
$\Lambda \text{CDM} + m_{\nu}$	Planck TT,TE,EE + lowP	≤ 0.49
$\Lambda \text{CDM} + m_{\nu}$	Planck TT + lowP + lensing + BAO + SN + H_0	≤ 0.23
$\Lambda \text{CDM} + m_{\nu}$	Planck TT,TE,EE + lowP+ BAO	≤ 0.17

Neutrino Masses and Mixing Light Sterile Neutrinos

Concha Gonzalez-Garcia

• Several Observations which can be Interpreted as Oscillations with $\Delta m^2 \sim \mathrm{eV}^2$

Reactor Anomaly

New reactor flux calculation \Rightarrow Deficit in data at $L \lesssim 100$ m

Explained as ν_e disappearance

Gallium Anomaly

Acero, Giunti, Laveder, 0711.4222 Giunti, Laveder, 1006.3244

Radioactive Sources (${}^{51}Cr$, ${}^{37}Ar$) in calibration of Ga Solar Exp;

 ν_e + ⁷¹Ga \rightarrow ⁷¹Ge + e^-

Give a rate lower than expected

$$R = \frac{N_{\rm obs}}{N_{\rm Bahc}^{\rm th}} = 0.86 \pm 0.05 \ (2.8\sigma)$$

Explained as ν_e disappearance

LSND, MiniBoone

 $\nu_{\mu} \rightarrow \nu_{e}$ and $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$

Kopp etal, ArXiv 1303.3011

Kopp etal, ArXiv 1303.3011

Neutrino Masses and Mixing

Light Sterile Neutrinos

Concha Gonzalez-Garcia

• These explanations require $3+N_s$ mass eigenstates $\rightarrow N_s$ sterile neutrinos

• Problem: fit together $\nu_e \rightarrow \nu_e$ disapp (REACT,Gallium,Solar, LSND/KARMEN) $\nu_\mu \rightarrow \nu_e$ app (LSND,KARMEN,NOMAD,MiniBooNE,E776,ICARUS) $\nu_\mu \rightarrow \nu_\mu$ disapp (CDHS,ATM,MINOS,MiniBooNE)

• Generically: $P(\nu_e \rightarrow \nu_\mu) \sim |U_{ei}^* U_{\mu i}|$ [*i* =heavier state(s)]

But $|U_{ei}|$ constrained by $P(\nu_e \to \nu_e)$ disappearance data And $|U_{\mu i}|$ constrained by $P(\nu_\mu \to \nu_\mu)$ disappearance data $\}$ \Rightarrow Severe tension Neutrino Masses and M

Light Sterile Neutrinos:3+1

oncha Gonzalez-Garcia

• Comparing the parameters required to explain signals with bounds from disapp

Further Disfavoured by ICECUBE

Somewhat different conclusions

Neutrino Masses and M

Light Sterile Neutrinos:3+1

oncha Gonzalez-Garcia

• Comparing the parameters required to explain signals with bounds from disapp

Somewhat different conclusions

Further Disfavoured by ICECUBE

More steriles help? Arguelles etal ArXiv:1602.00671 Though disfavoured by Cosmology

Massive ν **in Cosmology**

Relic $\nu's$: Effects in several cosmological observations at several epochs

Observables also depend on all other cosmological parameters

Concha Gonzalez-Garcia

Cosmological Analysis by Planck

Range of Bounds

Model	Observables	Σm_{ν} (eV) 95%
$\Lambda \text{CDM} + m_{\nu}$	Planck TT + lowP	≤ 0.72
$\Lambda \text{CDM} + m_{\nu}$	Planck TT + lowP + lensing	≤ 0.68
$\Lambda \text{CDM} + m_{\nu}$	Planck TT,TE,EE + lowP+lensing	≤ 0.59
$\Lambda \text{CDM} + m_{\nu}$	Planck TT, TE, EE + lowP	≤ 0.49
$\Lambda \text{CDM} + m_{\nu}$	Planck TT + lowP + lensing + BAO + SN + H_0	≤ 0.23
$\Lambda \text{CDM} + m_{\nu}$	Planck TT,TE,EE + lowP+ BAO	≤ 0.17

Neutrino Mass Light Sterile Neutrinos in Cosmology

onzalez-Garcia

One light ν_s mixed with 3 $\nu'_a s$ contributes to ρ as N_{eff} .

From evol eq for 3 + 1 ensemble one finds \Rightarrow So if "explaination" to SBL anomalies $1 \nu_s$ contributes as much as $1 \nu_a$

But analysis of cosmo data in $\Lambda \text{CDM} + r + \nu_s$ tells us

Non Standard ν **Int:Determination of Matter Potential**

 \bullet Including non-standard neutrino NC interactions with fermion f

$$\mathcal{L}_{\rm NSI} = -2\sqrt{2}G_F \varepsilon^{fP}_{\alpha\beta} (\bar{\nu}_{\alpha}\gamma^{\mu}\nu_{\beta}) (\bar{f}\gamma_{\mu}Pf), \quad P = L, R$$

• In the three-flavor oscillation picture, the neutrino evolution equation reads:

$$i\frac{d}{dx}\begin{pmatrix}\nu_e\\\nu_\mu\\\nu_\tau\end{pmatrix} = H^{\nu}\begin{pmatrix}\nu_e\\\nu_\mu\\\nu_\tau\end{pmatrix} \quad \text{with} \ H^{\nu} = H_{\text{vac}} + H_{\text{mat}} \quad \text{and} \quad H^{\bar{\nu}} = (H_{\text{vac}} - H_{\text{mat}})^*$$

with most general matter potential

$$H_{\text{mat}} = \sqrt{2}G_F N_e(r) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \sqrt{2}G_F \sum_{f=e,u,d} N_f(r) \begin{pmatrix} \varepsilon_{ee}^f & \varepsilon_{e\mu}^f & \varepsilon_{e\tau}^f \\ \varepsilon_{e\mu}^{f*} & \varepsilon_{\mu\mu}^f & \varepsilon_{\mu\tau}^f \\ \varepsilon_{e\tau}^{f*} & \varepsilon_{\mu\tau}^{f*} & \varepsilon_{\tau\tau}^f \end{pmatrix}$$

with
$$\varepsilon_{\alpha\beta}^f = \varepsilon_{\alpha\beta}^{fL} + \varepsilon_{\alpha\beta}^{fR}$$

• The 3ν evolution depends on 6 (vac) + 8 per f (mat)= 14 Parameters

Matter Potential/NSI in Solar and KamLAND

• Solar $\nu's$: 2 relevant combinations of NSI

$$\begin{aligned} \varepsilon_D^f &= c_{13} s_{13} \operatorname{Re} \left[e^{i\delta_{\mathrm{CP}}} \left(s_{23} \varepsilon_{e\mu}^f + c_{23} \varepsilon_{e\tau}^f \right) \right] \\ &- \left(1 + s_{13}^2 \right) c_{23} s_{23} \operatorname{Re} \left(\varepsilon_{\mu\tau}^f \right) \\ &- \frac{c_{13}^2}{2} \left(\varepsilon_{ee}^f - \varepsilon_{\mu\mu}^f \right) + \frac{s_{23}^2 - s_{13}^2 c_{23}^2}{2} \left(\varepsilon_{\tau\tau}^f - \varepsilon_{\mu\mu}^f \right) \end{aligned}$$

$$\varepsilon_{N}^{f} = c_{13} \left(c_{23} \varepsilon_{e\mu}^{f} - s_{23} \varepsilon_{e\tau}^{f} \right) + s_{13} e^{-i\delta_{\rm CP}} \left[s_{23}^{2} \varepsilon_{\mu\tau}^{f} - c_{23}^{2} \varepsilon_{\mu\tau}^{f*} \right. \\ \left. + c_{23} s_{23} \left(\varepsilon_{\tau\tau}^{f} - \varepsilon_{\mu\mu}^{f} \right) \right]$$

Matter Potential/NSI in Solar and KamLAND

• Solar $\nu's$: 2 relevant combinations of NSI

$$\begin{split} \varepsilon_D^f &= c_{13} s_{13} \operatorname{Re} \left[e^{i\delta_{\rm CP}} \left(s_{23} \, \varepsilon_{e\mu}^f + c_{23} \, \varepsilon_{e\tau}^f \right) \right] \\ &- \left(1 + s_{13}^2 \right) c_{23} s_{23} \operatorname{Re} \left(\varepsilon_{\mu\tau}^f \right) \\ &- \frac{c_{13}^2}{2} \left(\varepsilon_{ee}^f - \varepsilon_{\mu\mu}^f \right) + \frac{s_{23}^2 - s_{13}^2 c_{23}^2}{2} \left(\varepsilon_{\tau\tau}^f - \varepsilon_{\mu\mu}^f \right) \end{split}$$

$$\begin{aligned} \varepsilon_N^f &= c_{13} \left(c_{23} \, \varepsilon_{e\mu}^f - s_{23} \, \varepsilon_{e\tau}^f \right) \\ + s_{13} e^{-i\delta_{\rm CP}} \left[s_{23}^2 \, \varepsilon_{\mu\tau}^f - c_{23}^2 \, \varepsilon_{\mu\tau}^{f*} \right. \\ \left. + c_{23} s_{23} \left(\varepsilon_{\tau\tau}^f - \varepsilon_{\mu\mu}^f \right) \right] \end{aligned}$$

• Better fit with NSI ($\Delta \chi^2_{\rm OSC} \simeq 5-7$)

Due to no observation of MSW up-turn

Matter Potential/NSI in Solar and KamLAND

• Solar $\nu's$: 2 relevant combinations of NSI

$$\begin{split} \varepsilon_D^f &= c_{13} s_{13} \operatorname{Re} \left[e^{i\delta_{\rm CP}} \left(s_{23} \, \varepsilon_{e\mu}^f + c_{23} \, \varepsilon_{e\tau}^f \right) \right] \\ &- \left(1 + s_{13}^2 \right) c_{23} s_{23} \operatorname{Re} \left(\varepsilon_{\mu\tau}^f \right) \\ &- \frac{c_{13}^2}{2} \left(\varepsilon_{ee}^f - \varepsilon_{\mu\mu}^f \right) + \frac{s_{23}^2 - s_{13}^2 c_{23}^2}{2} \left(\varepsilon_{\tau\tau}^f - \varepsilon_{\mu\mu}^f \right) \end{split}$$

$$\varepsilon_{N}^{f} = c_{13} \left(c_{23} \varepsilon_{e\mu}^{f} - s_{23} \varepsilon_{e\tau}^{f} \right) + s_{13} e^{-i\delta_{\rm CP}} \left[s_{23}^{2} \varepsilon_{\mu\tau}^{f} - c_{23}^{2} \varepsilon_{\mu\tau}^{f*} \right. \left. + c_{23} s_{23} \left(\varepsilon_{\tau\tau}^{f} - \varepsilon_{\mu\mu}^{f} \right) \right]$$

• Better fit with NSI ($\Delta \chi^2_{\rm OSC} \simeq 5-7$)

Due to no observation of MSW up-turn

• LMA and LMA-D $(\theta_{12} > \frac{\pi}{4})$ allowed

Neutrino Mas Matter Potential/NSI: Global Analysis

nzalez-Garcia

• Parameter space of matter potential is bounded

Osc parameter robust (but solar dark side)

Bounds from global osc fit stronger than scattering ones for $\varepsilon_{\tau\beta}^{u,d}$

The Emerging Picture

- At least two neutrinos are massive \Rightarrow There is NP
- Oscillations DO NOT determine the lightest mass but β decay:

 $\sum m_{
u_i} \leq 2 \; \mathrm{eV/c^2}$

- \Rightarrow Heaviest ν is at least 1 millon de times lighter than the electron
- Dirac or Majorana?: We do not know
- Three mixing angles are non-zero (and relatively large) \Rightarrow very different from CKM
- The two arising questions
 - * Why are neutrinos so light?

The Origin of Neutrino Mass

* Why are lepton mixing so different from quark's?

The Flavour Puzzle

Bottom-up: Light ν from Generic New Physics

If SM is an effective low energy theory, for $E \ll \Lambda_{\rm NP}$

- The same particle content as the SM and same pattern of symmetry breaking
- But there can be non-renormalizable (dim> 4) operators

First NP effect \Rightarrow dim=5 operator There is only one!

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \sum_{n} \frac{1}{\Lambda_{\rm NP}^{n-4}} \mathcal{O}_n$$

$$\mathcal{L}_5 = \frac{Z_{ij}^{\nu}}{\Lambda_{\rm NP}} \left(\overline{L_{L,i}} \tilde{\phi} \right) \left(\tilde{\phi}^T L_{L,j}^C \right)$$

Bottom-up: Light ν from Generic New Physics

If SM is an effective low energy theory, for $E \ll \Lambda_{\rm NP}$

- The same particle content as the SM and same pattern of symmetry breaking
- But there can be non-renormalizable (dim> 4) operators

First NP effect \Rightarrow dim=5 operator There is only one!

which after symmetry breaking induces a ν Majorana mass

Implications:

- It is natural that ν mass is the first evidence of NP
- Naturally $m_{
 u} \ll$ other fermions masses $\sim \lambda^f v$ if $\Lambda_{
 m NP} >> v$

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \sum_{n} \frac{1}{\Lambda_{\rm NP}^{n-4}} \mathcal{O}_n$$

$$\mathcal{L}_5 = \frac{Z_{ij}^{\nu}}{\Lambda_{\rm NP}} \left(\overline{L_{L,i}} \tilde{\phi} \right) \left(\tilde{\phi}^T L_{L,j}^C \right)$$

$$(M_{\nu})_{ij} = Z^{\nu}_{ij} \frac{v^2}{\Lambda_{\rm NP}}$$

Bottom-up: Light ν **from** *Generic* **New Physics**

If SM is an effective low energy theory, for $E \ll \Lambda_{\rm NP}$

- The same particle content as the SM and same pattern of symmetry breaking
- But there can be non-renormalizable (dim> 4) operators

First NP effect \Rightarrow dim=5 operator There is only one!

which after symmetry breaking induces a ν Majorana mass

Implications:

- It is natural that ν mass is the first evidence of NP
- Naturally $m_{
 u} \ll$ other fermions masses $\sim \lambda^f v$ if $\Lambda_{\mathrm{NP}} >> v$

 $-m_{\nu} > \sqrt{\Delta m_{\text{atm}}^2} \sim 0.05 \text{ eV for } Z^{\nu} \sim 1 \Rightarrow \Lambda_{\text{NP}} \sim 10^{15} \text{GeV} \Rightarrow \Lambda_{\text{NP}} \sim \text{GUT scale}$ $\Rightarrow \text{Leptogenesis possible}$ [But if $Z^{\nu} \sim (Y_e)^2 \Rightarrow \Lambda_{\text{NP}} \sim \text{TeV scale}$]

 $\mathcal{L} = \mathcal{L}_{\rm SM} + \sum_{n} \frac{1}{\Lambda_{\rm NP}^{n-4}} \mathcal{O}_n$

$$\mathcal{L}_5 = \frac{Z_{ij}^{\nu}}{\Lambda_{\rm NP}} \left(\overline{L_{L,i}} \tilde{\phi} \right) \left(\tilde{\phi}^T L_{L,j}^C \right)$$

$$(M_{\nu})_{ij} = Z^{\nu}_{ij} \frac{v^2}{\Lambda_{\rm NP}}$$

 \mathcal{O}_5 is generated for example by tree-level exchange of singlet $(N_i \equiv (1, 1)_0)$ (Type-I) or triplet fermions $(N_i \equiv \Sigma_i \equiv (1, 3)_0)$ (Type-III) or a scalar triplet $\Delta \equiv (1, 3)_1$ (Type-II)

 \mathcal{O}_5 is generated for example by tree-level exchange of singlet $(N_i \equiv (1, 1)_0)$ (Type-I) or triplet fermions $(N_i \equiv \Sigma_i \equiv (1, 3)_0)$ (Type-III) or a scalar triplet $\Delta \equiv (1, 3)_1$ (Type-II)

• For fermionic see-saw $-\mathcal{L}_{\mathrm{NP}} = -i\overline{N_i} \mathcal{D} N_i + \frac{1}{2} M_{Nij} \overline{N_i^c} N_j + \lambda_{\alpha j}^{\nu} \overline{L_{\alpha}} \tilde{\phi} N_j [.\tau]$ $\Rightarrow \mathcal{O}_5 = \frac{(\lambda^{\nu T} \lambda^{\nu})_{\alpha\beta}}{\Lambda_{\mathrm{NP}}} \left(\overline{L_{\alpha}} \tilde{\phi}\right) \left(\tilde{\phi}^T L_{\beta}^C\right) \qquad \text{with} \quad \Lambda_{\mathrm{NP}} = M_N$

• For scalar see-saw $-\mathcal{L}_{\rm NP} = f_{\Delta\alpha\beta}\overline{L_{\alpha}}\Delta L_{\beta}^{C} + M_{\Delta}^{2} |\Delta|^{2} + \kappa \phi^{T} \Delta^{\dagger} \phi \dots$

$$\Rightarrow \mathcal{O}_5 = \frac{f_{\Delta_{\alpha\beta}}}{\Lambda_{NP}} \left(\overline{L_{\alpha}} \tilde{\phi} \right) \left(\tilde{\phi}^T L_{\beta}^C \right) \qquad \text{with} \quad \Lambda_{NP} = \frac{M_{\Delta}^2}{\kappa}$$

Very different physics, but same ν parameters: How to proceed?

Same \mathcal{O}_5 can be generated by very different High Energy physics Very different physics, but same ν parameters: How to proceed?

– Top-down: Assume some specific model and work out the relations

Modeling Lepton Flavour: 2006 to 2016

• Survey of 63 ν mass models in 2006 (Albright, M-C Chen,hep-ph/0608136)

– Determination of θ_{13} has given us important handle in flavour modeling – Next *frontier* is the ordering

Same \mathcal{O}_5 can be generated by very different High Energy physics Very different physics, but same ν parameters: How to proceed?

- Top-down: Assume some specific model and work out the relations
- Hope/Wait for additional information from charged LFV, collider signals ...

Summary

• 3ν parameter determination (at $\pm 3\sigma/6$)

$$\Delta m_{21}^2 = 7.49 \times 10^{-5} \text{ eV}^2 (2.3\%) \qquad \begin{aligned} \Delta m_{31}^2 &= 2.48 \times 10^{-3} \text{ eV}^2 \quad \text{NO} \\ \Delta m_{32}^2 &= -2.47 \times 10^{-3} \text{ eV}^2 \quad \text{IO} \end{aligned} \tag{1.8\%}$$
$$\sin^2 \theta_{12} = 0.308 (4\%) \qquad \sin^2 \theta_{23} = \begin{array}{c} 0.579 \quad \text{IO} \\ 0.479 \quad \text{NO} \end{array} (7.2\%) \quad \sin^2 \theta_{13} = 0.022 (4.8\%) \end{aligned}$$

• Still not significantly determined: Ordering θ_{23} Octant CPV? NO: $\delta_{CP} = 256^{\pm}43 \ (0 \rightarrow 360 \text{ allowed at } 3\sigma)$ (with NOvA-LEM) IO: $\delta_{CP} = 272^{+61}_{-64} \ (21 \rightarrow 131 \text{ excluded at } 3\sigma)$ Ignored: Majorana or Dirac Absolute ν mass $\langle 0, 780 \rangle > 0.843 = 0.517 \rangle > 0.584 = 0.137 \rangle > 0.158$

•
$$|U|_{\text{LEP}(3\sigma)} = \begin{pmatrix} 0.789 \rightarrow 0.843 & 0.517 \rightarrow 0.584 & 0.157 \rightarrow 0.158 \\ 0.231 \rightarrow 0.518 & 0.441 \rightarrow 0.693 & 0.617 \rightarrow 0.790 \\ 0.251 \rightarrow 0.530 & 0.468 \rightarrow 0.711 & 0.595 \rightarrow 0.773 \end{pmatrix}$$

- Sterile ν 's: Not satisfactory description of SBL anomalies. Tension with Cosmo
- Much more physics in this data than masses and mixings

Tests of solar models, of ATM fluxes, reactor fluxes ... New Physics: NSI, Lorentz Invarance, Tests of CPT ...

NuFIT 2.1 (2016) pnzalez-Garcia

LEM	Normal Or	dering (best fit)	Inverted Orde	ering $(\Delta \chi^2 = 0.97)$	Any Ordering
$\sin^2 heta_{12}$	$0.308\substack{+0.013\\-0.012}$	$0.273 \rightarrow 0.349$	$0.308\substack{+0.013\\-0.012}$	$0.273 \rightarrow 0.349$	$0.273 \rightarrow 0.349$
$ heta_{12}/^\circ$	$33.72_{-0.76}^{+0.79}$	$31.52 \rightarrow 36.18$	$33.72_{-0.76}^{+0.79}$	$31.52 \rightarrow 36.19$	$31.52 \rightarrow 36.18$
$\sin^2 heta_{23}$	$0.574_{-0.144}^{+0.026}$	$0.390 \rightarrow 0.639$	$0.579^{+0.022}_{-0.029}$	0.400 ightarrow 0.637	$0.390 \rightarrow 0.639$
$ heta_{23}/^{\circ}$	$49.3^{+1.5}_{-8.3}$	$38.6 \rightarrow 53.1$	$49.6^{+1.3}_{-1.7}$	$39.2 \rightarrow 53.0$	$38.6 \rightarrow 53.1$
$\sin^2 heta_{13}$	$0.0217\substack{+0.0013\\-0.0010}$	$0.0187 \rightarrow 0.0250$	$0.0221\substack{+0.0010\\-0.0010}$	$0.0190 \rightarrow 0.0251$	$0.0187 \rightarrow 0.0250$
$ heta_{13}/^{\circ}$	$8.47_{-0.20}^{+0.24}$	$7.86 \rightarrow 9.11$	$8.54_{-0.20}^{+0.19}$	$7.93 \rightarrow 9.12$	$7.86 \rightarrow 9.11$
$\delta_{ m CP}/^{\circ}$	272^{+61}_{-64}	$0 \rightarrow 360$	256^{+43}_{-43}	$131 \rightarrow 381$	$0 \rightarrow 360$
$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.49\substack{+0.19 \\ -0.17}$	$7.02 \rightarrow 8.08$	$7.49\substack{+0.19 \\ -0.17}$	$7.02 \rightarrow 8.08$	$7.02 \rightarrow 8.08$
$\frac{\Delta m_{3\ell}^2}{10^{-3}~{\rm eV}^2}$	$+2.484^{+0.045}_{-0.048}$	$+2.351 \rightarrow +2.618$	$-2.467^{+0.041}_{-0.042}$	$-2.595 \rightarrow -2.341$	$ \begin{bmatrix} +2.351 \to +2.618 \\ -2.588 \to -2.348 \end{bmatrix} $
LID	Normal Orde	ring $(\Delta \chi^2 = 0.55)$	Inverted Or	rdering (best fit)	Any Ordering
$\sin^2 heta_{12}$	$0.308\substack{+0.013\\-0.012}$	$0.273 \rightarrow 0.349$	$0.308\substack{+0.013\\-0.012}$	$0.273 \rightarrow 0.349$	$0.273 \rightarrow 0.349$
$ heta_{12}/^\circ$	$33.72_{-0.76}^{+0.79}$	$31.52 \rightarrow 36.18$	$33.72_{-0.76}^{+0.79}$	$31.52 \rightarrow 36.18$	$31.52 \rightarrow 36.18$
$\sin^2 heta_{23}$	$0.451^{+0.038}_{-0.025}$	$0.387 \rightarrow 0.634$	$0.576_{-0.033}^{+0.023}$	0.393 ightarrow 0.636	$0.389 \rightarrow 0.636$
$ heta_{23}/^{\circ}$	$42.2^{+2.2}_{-1.4}$	$38.5 \rightarrow 52.8$	$49.4^{+1.4}_{-1.9}$	$38.8 \rightarrow 52.9$	$38.6 \rightarrow 52.9$
$\sin^2 heta_{13}$	$0.0219\substack{+0.0010\\-0.0010}$	$0.0188 \rightarrow 0.0249$	$0.0219\substack{+0.0010\\-0.0010}$	$0.0189 \rightarrow 0.0250$	$0.0189 \rightarrow 0.0250$
$ heta_{13}/^\circ$	$8.50\substack{+0.19 \\ -0.20}$	$7.87 \rightarrow 9.08$	$8.51_{-0.20}^{+0.20}$	$7.89 \rightarrow 9.10$	$7.89 \rightarrow 9.10$
$\delta_{ m CP}/^{\circ}$	303^{+39}_{-50}	$0 \rightarrow 360$	262^{+51}_{-57}	$98 \rightarrow 416$	$0 \rightarrow 360$
$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.49\substack{+0.19 \\ -0.17}$	$7.02 \rightarrow 8.08$	$7.49\substack{+0.19 \\ -0.17}$	$7.02 \rightarrow 8.08$	$7.02 \rightarrow 8.08$
$\frac{\Delta m_{3\ell}^2}{10^{-3}~{\rm eV}^2}$	$+2.477^{+0.042}_{-0.042}$	$+2.351 \rightarrow +2.610$	$-2.465^{+0.041}_{-0.043}$	$-2.594 \rightarrow -2.339$	$ \begin{bmatrix} +2.355 \to +2.606 \\ -2.594 \to -2.339 \end{bmatrix} $
	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	3σ range

3ν Analysis: Leptonic CP violation

Leptonic Unitarity Triangles

3 *v* **Analysis: "12" Sector**

•
$$\Delta m_{13}^2 \gg E/L \Rightarrow P_{ee}^{3\nu} = c_{13}^4 P_{2\nu} + s_{13}^4$$

$$i\frac{d}{dt}\left(\begin{array}{c}\nu_{e}\\\nu_{a}\end{array}\right) = \left[\frac{\Delta m_{21}^{2}}{4E}\left(\begin{array}{c}-\cos 2\theta_{12} & \sin 2\theta_{12}\\\sin 2\theta_{12} & \cos 2\theta_{12}\end{array}\right) \pm \sqrt{2}G_{F}N_{e}\left(\begin{array}{c}c_{13}^{2} & 0\\0 & 0\end{array}\right)\right]\left(\begin{array}{c}\nu_{e}\\\nu_{a}\end{array}\right)$$

$$P_{ee} \simeq \begin{cases} \text{Solar High E} : c_{13}^4 \sin^2 2\theta_{12} \\ \text{Solar Low E} : c_{13}^4 \left(1 - \sin^2 2\theta_{12}/2\right) \\ \text{Kam} : c_{13}^4 \left(1 - \sin^2 2\theta_{12} \sin^2 \frac{\Delta m_{21}^2 L}{4E}\right) \end{cases}$$

* Solar region determined by High E data

* Param's $\begin{cases} \theta_{12} \text{ SNO most sensitivity} \\ \Delta m_{21}^2 \text{ by KamLAND} \end{cases}$

* Tension in best fit between

Solar and **KamLAND** $\Rightarrow \theta_{13}$ and ...?

With $\theta_{13} = 0$