GW150914 neutrino follow-up with ANTARES and IceCube

Alexis Coleiro APC / Université Paris Diderot

TARE

GDR Neutrinos 2016 LPSC Grenoble

Outline

- 1) Astrophysical context
- 2) Neutrino follow-up of GW1501914

Astrophysical context and sources of interest

The big picture of gravitational wave astronomy

The big picture of gravitational wave astronomy

The big picture of gravitational wave astronomy

• Most of massive stars live in binary systems

• Most of massive stars live in binary systems

- Undergo mass transfer
- Accretion / ejection processes

X-ray binaries

X-ray binaries

Neutrino detection : important hint of the jet composition and formation

Neutrino emission of X-ray binaries?

Most of massive stars live in binary systems

- Undergo mass transfer
- Accretion / ejection processes

Most of massive stars live in binary systems

- Undergo mass transfer
- Accretion / ejection processes
- Finish their life as compact object binaries

Most of massive stars live in binary systems

- Undergo mass transfer
- Accretion / ejection processes
- Finish their life as compact object binaries

short GRB + GW emission during coalescence

Most of massive stars live in binary systems

- Undergo mass transfer
- Accretion / ejection processes
- Finish their life as compact object binaries

short GRB + GW emission during coalescence

Compact objects coalescence

For BH/NS or NS/NS systems : gravitational waves

+ electromagnetic + neutrino emission expected if ejection process with baryonic component

Black hole binary coalescence

Discovery of GW150914

LIGO-Virgo collaborations PRL 116, 061102, 2016

Discovery of GW150914

GW150914 black hole masses : $M_1 = 36^{+5}_{-4} M_{\odot}$ and $M_2 = 29^{+4}_{-4} M_{\odot}$

From black hole masses in X-ray binaries :

Discovery of GW150914

GW150914 black hole masses : $M_1 = 36^{+5}_{-4} M_{\odot}$ and $M_2 = 29^{+4}_{-4} M_{\odot}$

From black hole masses in X-ray binaries :

Neutrino follow-up of GW150914

Energy radiated in GW: ~5 x 10⁵⁴ erg

Is a fraction of this energy emitted in neutrinos ? + Demonstrate synergies

Joint ANTARES - IceCube - LIGO/Virgo analysis Phys. Rev. D (in press) : <u>arXiv 1602.05411</u>

- → Online ANTARES and IceCube data
- → Event selection from neutrino point-source searches

→ Consistent with the background expectations (4.4 events for IceCube; 10⁻² for ANTARES)

→ Consistent with the background expectations (4.4 events for IceCube; 10⁻² for ANTARES)

90% upper limit on the spectral fluence

Constraints on the total energy emitted in neutrinos

$$\begin{split} \mathrm{E}^{\mathrm{ul}}_{\nu,\mathrm{tot}} &= 5.4 \times 10^{51} - 1.3 \times 10^{54} \,\mathrm{erg} \\ \mathrm{E}^{\mathrm{ul}(\mathrm{cutoff})}_{\nu,\mathrm{tot}} &= 6.6 \times 10^{51} - 3.7 \times 10^{54} \,\mathrm{erg} \end{split} \ \ \mathbf{at \ d=410^{+160}_{-180} \ \mathrm{Mpc}} \end{split}$$

- Energy radiated in GW: ~5 x 10⁵⁴ erg
- Typical short GRB isotropic-equivalent energies are ~10⁴⁹ erg
- May be similar to total energy radiated in neutrinos in GRBs (*Mészaros 2015; Bartos et al., 2013*)

Implications

Moharana et al., 2016

- Calculate HEN flux from a short GRB
- Non-detection of neutrino event can constrain jet parameters

Implications

Moharana et al., 2016

- Calculate HEN flux from a short GRB
- Non-detection of neutrino event can constrain jet parameters

Implications

Moharana et al., 2016

- Calculate HEN flux from a short GRB
- Non-detection of neutrino event can constrain jet parameters

Electromagnetic follow-up

What's next?

- First neutrino follow-up
- Thanks to previous GW+ HEN studies (e.g. ANTARES/LIGO-Virgo 2013)
- O2 LIGO+Virgo about to start (next summer)
- Expected detection rate ~2-400 Gpc⁻³ yr⁻¹
- Coincident neutrino/GW detection ?
- Can significantly constrain the GW source position
- Would open a new era

Spectral fluence U.L.

Energy range	$Limit \ [GeV cm^{-2}]$		
$100 \mathrm{GeV} - 1 \mathrm{TeV}$	150		
1 TeV - 10 TeV	18		
$10 \mathrm{TeV} - 100 \mathrm{TeV}$	5.1		
$100 \mathrm{TeV} - 1 \mathrm{PeV}$	5.5		
1 PeV - 10 PeV	2.8		
$10 \mathrm{PeV} - 100 \mathrm{PeV}$	6.5		
$ 100 \mathrm{PeV} - 1 \mathrm{EeV} $	28		

TABLE II. Upper limits on neutrino spectral fluence $(\nu_{\mu} + \overline{\nu}_{\mu})$ from GW150914, separately for different spectral ranges, at Dec = -70° . We assume $dN/dE \propto E^{-2}$ within each energy band.

<u>-</u>-2

ndidate neutrinos

:kground events when expecting 4.4 :

 $_{\rm xpected} = 4.4) = 0.81$

#	ΔT [s]	RA [h]	Dec [°]	$\sigma_{\mu}^{ m rec}$ [°]	$E^{\rm rec}_{\mu}$ [TeV]	fraction
1	+37.2	8.84	-16.6	0.35	175	12.5%
2	+163.2	11.13	12.0	1.95	1.22	26.5%
3	+311.4	-7.23	8.4	0.47	0.33	98.4%

proba. that at least one candidate (out of 3) has an energy high enough to make it appear even less background-like : $1 - (1 - 0.125)^3 \approx 0.33$

3) Position in the sky :

 $\Omega_{gw}=590\,deg^2~$ (90% C.L. skymap) and then : $\Omega_{gw}/\Omega_{all}\approx 0.014$ proba. that at least one of the 3 candidates has a position consistent with 90% C.L. skymap : $1-(1-0.014)^3\approx 0.04$