Geoneutrinos

Livia Ludhova Forschungzentrum Jülich, RWTH Aachen, JARA Institute GDR Neutrino, June 2016 LPSC Grenoble

- Main goal: determine the contribution of the radiogenic heat to the total surface heat flux, which is an important margin, test, and input at the same time for many geophysical and geochemical models of the Earth;
- **Further goals:** tests and discrimination among geological models, study of the mantle homogeneity, insights to the processes of Earth'formation....

Livia Ludhova: Geoneutrino

Livia Ludhova: Geoneutrino

P – primary, longitudinal waves S – secondary, transverse/shear waves **Discontinuities in the waves propagation and the density profile,** but no info about the chemical composition of the Earth

Livia Ludhova: Geoneutrino

From the talk of Sramek at Neutrino Geoscienece 2013

Seismic tomography image of present-day mantle

Seismic shear wave speed anomaly Tomographic model S20RTS (Ritsema et al.)

Two large scale seismic speed anomalies – below Africa and below central Pacific

Anti-correlation of shear and sound wavespeeds + sharp velocity gradients suggest a **compositional component**

"piles" or "LLSVPs" or "superplumes"

Candidate for an distinct chemical reservoir

-2.0 0.0 % Shear wave variation Bull et al. EPSL 2009

Sat AM: Ed Garnero

Livia Ludhova: Geoneutrino

Geochemistry

1) Direct rock samples

* surface and bore-holes (max. 12 km);
* mantle rocks brought up by tectonics
BUT: <u>POSSIBLE ALTERATION DURING</u> <u>THE TRANSPORT</u>

2) Geochemical models:

rock samples + meteorites + Sun
Bulk Silicate Earth (BSE) models
medium composition
of the "re-mixed" crust + mantle,
i.e., primordial mantle before the crust
differentiation and after the Fe-Ni core
separation

GDR Neutrino 2016, Grenoble, June 7th, 2016

Livia Ludhova: Geoneutrino

BSE models (classification according Sramek at al.)

Livia Ludhova: Geoneutrino

47 <u>+</u> 2 TW (Davies & Davies 2010)

Sources

Radiogenic heat: (Geoneutrinos)!!!!!

BSE models predictions:

- ✓ Geochemical BSE:17-21 TW
- ✓ Cosmochemical BSE: 11 TW
- ✓ Geodynamical BSE: > 30 TW

Other sources:

- 1) Residual heat from the past
- 2) 40 K in the core?
- 3) Nuclear reactor in the core?
- 4) Very minor (phase transitions, tidal etc..)

Geoneutrino detection

 $v_e + p \rightarrow n + e^+$ Inverse Beta Decay

"prompt signal"

e⁺: energy loss T_{e+} + annihilation (2 x 0.511 MeV) $E_{prompt} = E_{geonu} - 0.784 \text{ MeV}$

"delayed signal" neutron thermalisation & capture on protons, emission of 2.2 MeV γ

Livia Ludhova: Geoneutrino

IBD cross section

Energy threshold = 1.8 MeV

@ few MeV for electron flavour: ~10⁻⁴² cm² (~100 x more than scattering)

Livia Ludhova: Geoneutrino

GDR Neutrino 2016, Grenoble, June 7th, 2016

Geoneutrino spectrum

Livia Ludhova: Geoneutrino

We have then golden candidates found as time and spatial coincidences:

- They can be due to:
 - ✓ Geo-neutrinos;
 - Reactor antineutrinos;
 - Non-antineutrino backgrounds;
- We need to estimate different contributions and then extract the number of measured geo-neutrinos by fitting the E_{prompt} energy spectrum;

Expected geoneutrino signal

- LOC: Local crust: on the continental crust: about 50% of the expected geoneutrino signal comes from the crust within 500-800 km around the detector, thus local geology has to be known (for LNGS Coltorti et al. 2011);
- **ROC: Rest of the crust:** further crust is divided in 3D voxels, volumes for upper, middle, lower crust and sediments are estimated and a mean chemical composition is attributed to these volumes (Huang et al. 2013);
- Mantle = BSE (LOC + ROC): this is the real unknown, different BSE models are considered and the respective U + Th mass is distributed either homogeneously (maximal signal) or it is concentrated near to the core-mantle boundary (minimal signal);

_				
	Site	Mantovani et al. [91]	Dye [88]	Huang et al. [28]
Borexino	Kamioka	$24.7^{+4.3}_{-10.3}$	23.1 ± 5.5	$20.6^{+4.0}_{-3.5}$
KamLAND	Gran Sasso	$29.6^{+5.1}_{-12.4}$	28.9 ± 6.9	$29.0^{+6.0}_{-5.0}$ [TNU]
SNO+	Sudbury	$38.5^{+6.7}_{-16.1}$	34.9 ± 8.4	$34.0^{+6.3}_{-5.7}$
HanoHano	Hawaii	$3.3^{+0.6}_{-1.4}$	3.2 ± 0.6	$2.6^{+0.5}_{-0.5}$

1 TNU = 1 event / 10³² target protons / year Cca 1 event / 1 kton / 1 year with 100% detection efficiency

Livia Ludhova: Geoneutrino

1 TNU = 1 event / 10³² target protons / year Cca 1 event / 1 kton / 1 year with 100% detection efficiency

Livia Ludhova: Geoneutrino

1 TNU = 1 event / 10³² target protons / year Cca 1 event / 1 kton / 1 year with 100% detection efficiency

Livia Ludhova: Geoneutrino

Background sources

Reactor antineutrinos

Non-antineutrino background

- 1) Cosmogenic background
- 2) Accidental coincidences

3) Due to the internal radioactivity: (α,n) reactions

Background sources

Reactor antineutrinos

SOURCE OF REACTORS \overline{v} , FOR BOREXINO

Non-antineutrino background

So, ideally we would like to have our geoneutrino detector: Far away from reactors 194 rea **Deep underground Excellent radiopurity of construction** materials and of the liquid scintillator

Calculation of reactor anti-v signal

$$\Phi\left(E_{\bar{v}_{e}}\right) = \sum_{r=1}^{N_{react}} \sum_{m=1}^{N_{month}} \frac{T_{m}}{4\pi L_{r}^{2}} P_{rm} \sum_{i=1}^{4} \frac{f_{ri}}{E_{i}} \Phi_{i}\left(E_{\bar{v}_{e}}\right) P_{ee}\left(E_{\bar{v}_{e}}; \hat{\vartheta}, L_{r}\right)$$

Flux parameterization + neutrino oscillation survival probability:

- E_i: energy release per fission of isotope i (Huber-Schwetz 2004);
- • antineutrino flux per fission of isotope i (polynomial parametrization, Mueller et al.2011, Huber-Schwetz 2004);
- Pee: oscillation survival probability;

Detector related:

- T_m: live time during the month m;
- L_r: reactor r detector distance;
- Data from nuclear agencies:
 - Prm: thermal power of reactor r in month m (IAEA, EDF, and UN data base);
 - fri: power fraction of isotope i in reactor r;

235U 239Pu 238U 241Pu

Effect of neutrino oscillations

$$P(\overline{\nu}_e \to \overline{\nu}_e)$$

= 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21}

3 MeV antineutrino .. Oscillation length of ~100 km

 $-\sin^{2} 2\theta_{13} (\cos^{2} \theta_{12} \sin^{2} \Delta_{31} + \sin^{2} \theta_{12} \sin^{2} \Delta_{32}),$

for geoneutrinos we can use average survival probability of 0.551 + 0.015 (Fiorentini et al 2012), but for reactor antineutrinos not!

Livia Ludhova: Geoneutrino

Non-antineutrino background sources

1) Cosmogenic background

• ⁹Li and ⁸He ($T_{1/2} = 119/178$ ms) decay: β (prompt) +neutron (delayed);

fast neutrons

scattered protons (prompt) Estimated by studying coincidences detected AFTER muons

2) Accidental coincidences; Estimated by studying OFF-time coincidences

3) Due to the internal radioactivity: (α , n) reactions: ¹³C(α , n)¹⁶O

Prompt: scattered proton, ¹²C(4.4 MeV) and ¹⁶O (6.1 MeV) deexcitation gammas

Estimated by studying ²¹⁰Po(α) and ¹³C contaminations

- only 2 running experiments have measured geoneutrinos;
- liquid scintillator detectors;
- •(Anti-)neutrinos have low interaction rates, therefore:
 - Large volume detectors needed;
 - High radiopurity of construction materials;
 - Underground labs to shield cosmic radiations;

KamLand in Kamioka, Japan Border bewteen OCEANIC AND CONTINENTAL CRUST

- build to detect reactor anti-v;
- 1000 tons;

•S(reactors)/S(geo) ~ 6.7 (2010)

•After the Fukushima disaster (March 2011) many reactors OFF!

- data since 2002;
- •2700 m water equivalent shielding;

Borexino in Gran Sasso, Italy CONTINENTAL CRUST

- originally build to measure neutrinos from the Sun – extreme radiopurity needed and achieved;
- 280 tons;
- •S(reactors)/S(geo) ~ 0.3 !!! (2010)
- DAQ started in 2007;
- 3600 m.w.e. shielding;

Borexino

GDR Neutrino 2016, Grenoble, June 7th, 2016

Livia Ludhova: Geoneutrino

Geoneutrino experimental results

KamLAND (Japan)

- The first investigation in 2005 CL < 2σ Nature 436 (2005) 499
- <u>Update in 2008</u>
 73 ± 27 geonu's
 PRL 100 (2008) 221803
- 99.997 CL observation in 2011 106 ⁺²⁹ - 28 geonu's (March 2002 - April 2009) 3.49 x 10³² target-proton year Nature Geoscience 4 (2011) 647
- Latest result in 2013

116 ⁺²⁸ ₋₂₇ **geonu's** (March 2002 – November 2012) 4.9 x 10³² target-proton year 0-hypothesis @ 2 x 10⁻⁶ PRD 88 (2013) 033001

Borexino (Italy)

<u>99.997 CL observation in 2010</u>
 9.9 ^{+4.1} - 3.4 geonu's

small exposure but low background level (December 2007 – December 2009) 1.5 x 10³¹ target-proton year PLB 687 (2010) 299

• <u>Update in 2013</u>

14.3 <u>+</u> 4.4 geonu's

(December 2007 – August 2012) 3.69 x 10³¹ target-proton year 0-hypothesis @ 6 x 10⁻⁶ PLB 722 (2013) 295–300

• <u>NEW in June 2015: 5.9σ CL</u>

 $23.7^{+6.5}_{-5.7}$ (stat) $^{+0.9}_{-0.6}$ (sys) geonu's

(December 2007 – March 2015) 5.5 x 10³¹ target-proton year 0-hypothesis @ 3.6 x 10⁻⁹ PRD 92 (2015) 031101 (R)

Livia Ludhova: Geoneutrino

Latest geoneutrino results

Borexino geoneutrino analysis

Unbinned maximal likelihood fit:

- Geoneutrinos free
- Reactor antineutrinos free
- Other backgrounds (0.78^{+0.78}-0.10 events total) constrained

Period	Dec.07 – Mar15 (5.5 <u>+</u> 0.3) 10 ³¹ prot*y
Tot ev [full sp.]	77
Reactors ev.	52.7 $_{-7.7}$ +8.5 (stat) $_{-0.9}$ +0.7 (sys)
Background ev.	0.78 _{-0.10} +0.13
Geo-v ev.	23.7 $_{-5.7}^{+6.5}$ (stat) $_{-0.6}^{+0.9}$ (sys))
Geo-v signal (ТNU)	43.5 $_{-10.4}$ $^{+11,8}$ (stat) $_{-2.4}$ $^{+2.7}$ (sys)

Two types of fits

- 1) Th/U mass ratio fixed to chondritic value of 3.9
- $N_{geo} = 23.7 + 6.5 5.7 (stat) + 0.9 0.6 (sys)$ events $S_{geo} = 43.5 + 11.8 - 10.4 (stat) + 2.7 - 2.4 (sys)$ TNU¹

2) U and Th free fit paramters

Livia Ludhova: Geoneutrino

GDR Neutrino 2016, Grenoble, June 7th, 2016

Geological implications of the new Borexino results

- Radiogenic heat (U+Th): 23-36 TW for the best fit and 11-52 TW for 1σ range
- Considering chondritic mass ratio Th/U=3.9 and K/U = 10⁴ : Radiogenic heat (U + Th + K) = 33⁺²⁸-20 TW

to be compared with 47 ± 2 TW of the total Earth surface heat flux (including all sources)

Mantle signal

•
$$S_{Mantle} = S_{measured} - S_{crust}$$

- Crustal signal at LNGS "known" $S_{Crust} = (23.4 \pm 2.8) \text{ TNU}$
- Non-0 mantle signal at 98% CL $S_{mantle} = 20.9^{+15.1}_{-10.3}$ TNU

Livia Ludhova: Geoneutrino

Latest KamLAND geoneutrino results

Livia Ludhova: Geoneutrino

- After Fukushima, Japanese reactors off
- Plan to refurbish outer detector in Jan' 16.. new update expected then!

JUNO in Jiangmen, China

Livia Ludhova: Geoneutrino

GDR Neutrino 2016, Grenoble, June 7th, 2016

ν_τ

υν...

ν.

JUNO detector: the first multi-kton liquid scintillator detector ever

Livia Ludhova: Geoneutrino

Principle of the mass-hierarchy measurement

Livia Ludhova: Geoneutrino

JUNO potential to measure geoneutrinos

Big advantage:

✓ Big volume and thus high statistics (400 geonu / year)!

Main limitations:

- ✓ Huge reactor neutrino background;
- Relatively shallow depth cosmogenic background;

Critical:

✓ Keep other backgrounds (²¹⁰Po contamination!) at low level and under control;

JUNO can provide another geoneutrino measurement with a comparable or even a better precision than existing results at another location in a completely different geological environment;

Livia Ludhova: Geoneutrino

Would be the ultimate Hanohano at Hawaii geoneutrino project

Hawaii Antineutrino Observatory (HANOHANO = "magnificent" in Hawaiian

Project for a 10 kton liquid scintillator detector, movable and placed on a deep ocean floor

J. G. Learned et al., XII International Workshop on Neutrino Telescopes, Venice, 2007.

Since Hawai placed on the U-Th depleted oceanic crust **70% of the signal from the mantle!** Would lead to very interesting results! (Fiorentini et al.)

BSE: 60-100 events/per year

Geoneutrino future

- Borexino will switch to SOX in 2017 closure of geoneutrino dataset;
- **KamLAND**: next update with low reactor-background data expected in 2016;
- **SNO+** (Canada): 780 ton & DAQ start in 2017; detector should be able to provide geoneutrino results;
- JUNO (China): 20 kton & DAQ start in 2020; If non antineutrino background low and under control, JUNO will soon beat the precision of existing measurements;
- HanoHano (Hawaii): 10 kton underwater detector with ~80% mantle contribution: "THE" GEONU DETECTOR: MISSING FUNDING!
- New interdisciplinary field established: **NEUTRINO GEOSCIENCE** conference every two years
- Importance of multi-site measurements at geologically different environments

Livia Ludhova: Geoneutrino